TimeMixer 源码仓库指南
项目地址:https://gitcode.com/gh_mirrors/ti/TimeMixer
本教程将引导您了解 TimeMixer
开源项目的目录结构、启动文件以及配置文件。以下是详细内容:
1. 项目目录结构及介绍
TimeMixer
├── README.md # 项目简介
├── config # 配置文件目录
│ └── config.yaml # 示例配置文件
├── data # 数据集和预处理脚本
│ ├── raw_data # 原始数据存放处
│ └── preprocess.py # 数据预处理脚本
├── experiments # 实验相关文件
│ ├── logs # 训练日志文件夹
│ └── scripts # 运行实验的shell脚本
├── src # 代码主体
│ ├── model # 时间序列模型代码
│ │ └── timemixer.py # TimeMixer模型实现
│ ├── utils # 辅助工具函数
│ │ ├── dataset.py # 数据加载器
│ │ └── metrics.py # 评价指标
│ └── train.py # 训练脚本
└── requirements.txt # 项目依赖包列表
解释:
config
目录存储所有必要的配置文件。data
包含原始数据和预处理脚本,用于准备输入到模型的数据。experiments
用来管理训练过程中的日志和运行脚本。src
是核心代码库,model
存放模型实现,utils
包含各种辅助功能。train.py
是主训练脚本,它读取配置并启动模型训练流程。
2. 项目的启动文件介绍
train.py
这是项目的主训练脚本。它负责加载配置、初始化模型、创建数据加载器,并执行训练循环。在命令行中,你可以通过以下方式运行该脚本:
python src/train.py --config_path path/to/config.yaml
其中,path/to/config.yaml
是你的配置文件路径。
3. 项目的配置文件介绍
配置文件位于 config/config.yaml
,它定义了训练过程的参数,包括模型超参数、数据加载设置和优化器配置等。例如:
model:
name: TimeMixer
hidden_size: 128
num_layers: 4
dataset:
dataset_name: my_dataset
input_length: 192
output_length: 64
batch_size: 32
training:
epochs: 100
learning_rate: 0.001
weight_decay: 1e-5
save_dir: experiments/logs/
配置文件说明:
model
: 定义使用的模型(在这里是 TimeMixer)及其超参数。dataset
: 数据集相关设置,如输入和输出的时间步长以及批大小。training
: 训练参数,包括训练轮数、学习率、权重衰减和模型保存路径。
要自定义训练,只需修改此配置文件以匹配你的需求,然后在运行时指定新的配置文件。
请确保在运行前安装了 requirements.txt
文件列出的所有依赖项。若在使用过程中遇到任何问题,参考项目文档或联系贡献者获取帮助。