Factorio-SAT 项目教程

Factorio-SAT 项目教程

Factorio-SAT Enhancing the Factorio experience with SAT solvers Factorio-SAT 项目地址: https://gitcode.com/gh_mirrors/fa/Factorio-SAT

1. 项目介绍

Factorio-SAT 是一个开源项目,旨在通过使用 SAT 求解器来优化 Factorio 游戏中的平衡器设计。该项目通过将游戏中的元素(如传送带、分拣器等)表示为布尔变量,并利用 SAT 求解器来找到最优的布局方案。这种方法可以帮助玩家在游戏中设计出高效的工厂布局,减少资源和时间的浪费。

2. 项目快速启动

环境准备

首先,确保你已经安装了 Python 和 Git。然后,按照以下步骤进行操作:

  1. 克隆项目仓库

    git clone https://github.com/R-O-C-K-E-T/Factorio-SAT.git
    cd Factorio-SAT
    
  2. 创建虚拟环境

    python -m venv venv
    source venv/bin/activate  # Unix/macOS
    # 或者
    venv\Scripts\activate  # Windows
    
  3. 安装依赖

    pip install --editable .
    
  4. 获取游戏资源

    你需要指定 Factorio 的安装路径来获取游戏资源:

    fetch_assets /path/to/factorio/install
    

    确保你的 Factorio 安装目录结构如下:

    Factorio/
    ├── bin/
    ├── data/
    │   ├── base/
    │   ├── core/
    │   └── ...
    
  5. 安装 Graphviz

    为了渲染分拣器网络,你需要安装 Graphviz。可以通过包管理器安装,或者从官网下载最新安装包。

运行示例

以下是一个简单的示例代码,展示如何使用 Factorio-SAT 生成一个平衡器布局:

from factorio_sat import BalancerGenerator

# 创建一个平衡器生成器实例
generator = BalancerGenerator()

# 生成一个 3x3 的平衡器布局
layout = generator.generate_balancer(3, 3)

# 输出布局
print(layout)

3. 应用案例和最佳实践

应用案例

Factorio-SAT 可以应用于以下场景:

  • 优化工厂布局:通过生成高效的平衡器布局,减少传送带和分拣器的使用,从而节省资源和时间。
  • 自动化设计:利用 SAT 求解器自动生成复杂的工厂布局,减少手动设计的繁琐工作。

最佳实践

  • 选择合适的平衡器大小:根据实际需求选择合适的平衡器大小,避免过度设计。
  • 优化资源使用:通过减少传送带和分拣器的使用,优化资源的使用效率。
  • 自动化测试:定期运行自动化测试,确保生成的布局符合预期。

4. 典型生态项目

  • OptaPlanner:一个开源的元启发式求解器,可以用于优化各种复杂的调度问题。
  • Timefold.ai:OptaPlanner 的商业版本,提供更多的功能和支持。
  • Graphviz:一个开源的图形可视化工具,用于渲染 Factorio-SAT 生成的布局。

通过结合这些生态项目,可以进一步提升 Factorio-SAT 的功能和应用范围。

Factorio-SAT Enhancing the Factorio experience with SAT solvers Factorio-SAT 项目地址: https://gitcode.com/gh_mirrors/fa/Factorio-SAT

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙香令Beatrice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值