LaneGCN 开源项目安装与使用指南
LaneGCN 项目地址: https://gitcode.com/gh_mirrors/la/LaneGCN
LaneGCN 是一个基于图卷积网络(Graph Convolutional Network)的学习车道表示用于运动预测的项目,该工作在 ECCV 2020 上作为口头报告发表。本指南将指导您了解其目录结构、启动文件以及配置文件的相关信息。
1. 项目目录结构及介绍
项目的基本结构如下:
LaneGCN/
├── data.py # 数据处理相关代码
├── get_data.sh # 下载预处理数据的脚本
├── lanegcn.py # LaneGCN 主要模型定义
├── layers.py # 自定义图卷积等网络层
├── preprocess_data.py # 数据预处理脚本
├── test.py # 模型测试脚本
├── train.py # 训练脚本
├── train1.py # 可能是特定训练设置的变体
├── utils.py # 辅助函数集合
├── README.md # 项目说明文档
├── LICENSE # 许可证文件
└── ...
- data.py: 负责数据加载和预处理逻辑。
- get_data.sh: 执行此脚本来下载并准备项目所需的数据集。
- lanegcn.py: 包含 LaneGCN 的核心网络架构。
- layers.py: 定义了用于 LaneGCN 的图神经网络层。
- preprocess_data.py: 提供数据预处理的工具,对于新数据的导入和处理至关重要。
- test.py: 用于对训练好的模型进行推理测试。
- train.py 和 train1.py: 分别为训练模型的主要脚本,后者可能是某个特定训练配置或实验的版本。
- utils.py: 含有各种通用辅助函数,如日志记录、计算指标等。
- README.md: 项目简介、安装步骤、运行示例等重要信息。
- LICENSE: 项目使用的许可证信息。
2. 项目的启动文件介绍
训练模型:
使用 train.py
或 train1.py
文件来训练模型。对于分布式训练,可以利用 horovodrun
工具。例如,在单节点4GPU环境下运行训练,命令如下:
horovodrun -np 4 -H localhost:4 python train.py -m lanegcn
测试模型:
测试已训练好的模型,使用 test.py
文件,并指定权重路径和数据分割。以提交测试集推理为例:
python test.py -m lanegcn --weight=/path/to/your/checkpoint --split=test
3. 项目的配置文件介绍
尽管该仓库没有明确指出单独的配置文件,但所有的配置参数直接通过命令行传递给训练和测试脚本。这些参数包括但不限于PyTorch版本要求、依赖库、训练时的超参数(如学习率、批次大小)、模型加载路径等。您可以通过调用脚本时添加相应的标志来定制配置,例如,设置GPU数量、选择模型保存路径等。
由于项目依赖项的管理主要通过环境变量和pip安装完成,建议查看 README.md
中的“Install Dependancy”部分,那里详细列出了安装所有必需软件包的步骤,包括特殊的依赖如Horovod,这对于分布式训练尤为重要。
请注意,由于原始仓库被归档且不推荐直接修改,上述操作应在本地副本中执行,同时考虑到仓库可能的更新或补丁。务必遵循最新的官方文档或仓库README中的指示。