Detectron2入门指南:从模型推理到自定义训练
什么是Detectron2
Detectron2是Facebook Research推出的基于PyTorch的计算机视觉研究平台,专注于目标检测、实例分割、全景分割等视觉任务。作为Detectron的升级版本,它提供了更灵活的模块化设计、更高效的训练流程以及更丰富的预训练模型。
环境准备
在开始使用Detectron2之前,需要确保系统满足以下要求:
- Python 3.6或更高版本
- PyTorch 1.5或更高版本
- CUDA环境(如需GPU加速)
- OpenCV等基础视觉库
使用预训练模型进行推理
Detectron2提供了丰富的预训练模型,可以快速实现高质量的视觉任务处理。以下是使用预训练模型进行推理的基本流程:
1. 选择模型
Detectron2模型库提供了多种配置的模型,包括:
- Faster R-CNN系列
- Mask R-CNN系列
- RetinaNet
- Cascade R-CNN等
每个模型都有对应的配置文件(.yaml),详细说明了网络结构和训练参数。
2. 运行推理演示
Detectron2提供了便捷的demo.py脚本,支持多种输入源:
# 处理单张/多张图片
python demo.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
--input image1.jpg image2.jpg \
--opts MODEL.WEIGHTS model_final.pkl
# 使用摄像头实时处理
python demo.py --config-file configs/...yaml --webcam
# 处理视频文件
python demo.py --config-file configs/...yaml --video-input video.mp4
3. 输出选项
可以根据需求调整输出方式:
--output
参数指定输出目录或文件MODEL.DEVICE cpu
强制使用CPU运行- 可视化窗口支持实时交互
模型训练与评估
Detectron2提供了两种训练脚本,满足不同需求:
1. 标准训练脚本(train_net.py)
这是功能最全面的训练脚本,支持:
- 多GPU分布式训练
- 自动混合精度训练
- 丰富的日志记录
- 模型评估一体化
典型使用方式:
# 8 GPU训练
./train_net.py --num-gpus 8 \
--config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
# 单GPU训练(需调整参数)
./train_net.py --num-gpus 1 \
--config-file configs/...yaml \
SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
2. 简化训练脚本(plain_train_net.py)
这个版本更加轻量级,适合:
- 快速原型开发
- 自定义训练流程
- 学习Detectron2训练机制
模型评估
训练完成后,可以使用以下命令评估模型性能:
./train_net.py \
--config-file configs/...yaml \
--eval-only MODEL.WEIGHTS /path/to/checkpoint
自定义训练数据
Detectron2支持多种数据格式,要使用自定义数据集需要:
- 按照标准格式组织数据
- 注册数据集
- 修改配置文件中的数据集参数
典型的数据集目录结构应包含:
- 图像文件
- 标注文件(COCO格式或自定义格式)
- 数据集划分(train/val/test)
高级API使用
除了命令行工具,Detectron2还提供了丰富的Python API,可以实现:
- 自定义模型架构
- 特殊数据增强
- 复杂训练流程
- 模型部署优化
核心模块包括:
DefaultPredictor
: 封装好的推理接口DefaultTrainer
: 可扩展的训练基类DatasetMapper
: 数据预处理管道build_model
: 模型构造器
性能调优建议
- 批量大小:根据GPU内存调整SOLVER.IMS_PER_BATCH
- 学习率:与批量大小线性相关(LR = BASE_LR * IMS_PER_BATCH / REFERENCE_BS)
- 数据加载:使用足够的工作进程(NUM_WORKERS)避免IO瓶颈
- 混合精度:启用AMP训练可减少显存占用
常见问题解决
-
CUDA内存不足:
- 减小批量大小
- 使用梯度累积
- 启用AMP训练
-
数据加载慢:
- 增加NUM_WORKERS
- 使用SSD存储数据
- 预加载小数据集
-
训练不稳定:
- 检查学习率设置
- 验证数据标注质量
- 尝试更小的模型
Detectron2作为强大的视觉研究框架,既适合快速验证想法,也能支撑大规模生产应用。通过掌握这些基础使用方法,开发者可以高效地开展各类计算机视觉项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考