Detectron2入门指南:从模型推理到自定义训练

Detectron2入门指南:从模型推理到自定义训练

detectron2 Detectron2 is a platform for object detection, segmentation and other visual recognition tasks. detectron2 项目地址: https://gitcode.com/gh_mirrors/de/detectron2

什么是Detectron2

Detectron2是Facebook Research推出的基于PyTorch的计算机视觉研究平台,专注于目标检测、实例分割、全景分割等视觉任务。作为Detectron的升级版本,它提供了更灵活的模块化设计、更高效的训练流程以及更丰富的预训练模型。

环境准备

在开始使用Detectron2之前,需要确保系统满足以下要求:

  • Python 3.6或更高版本
  • PyTorch 1.5或更高版本
  • CUDA环境(如需GPU加速)
  • OpenCV等基础视觉库

使用预训练模型进行推理

Detectron2提供了丰富的预训练模型,可以快速实现高质量的视觉任务处理。以下是使用预训练模型进行推理的基本流程:

1. 选择模型

Detectron2模型库提供了多种配置的模型,包括:

  • Faster R-CNN系列
  • Mask R-CNN系列
  • RetinaNet
  • Cascade R-CNN等

每个模型都有对应的配置文件(.yaml),详细说明了网络结构和训练参数。

2. 运行推理演示

Detectron2提供了便捷的demo.py脚本,支持多种输入源:

# 处理单张/多张图片
python demo.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
  --input image1.jpg image2.jpg \
  --opts MODEL.WEIGHTS model_final.pkl

# 使用摄像头实时处理
python demo.py --config-file configs/...yaml --webcam

# 处理视频文件
python demo.py --config-file configs/...yaml --video-input video.mp4

3. 输出选项

可以根据需求调整输出方式:

  • --output 参数指定输出目录或文件
  • MODEL.DEVICE cpu 强制使用CPU运行
  • 可视化窗口支持实时交互

模型训练与评估

Detectron2提供了两种训练脚本,满足不同需求:

1. 标准训练脚本(train_net.py)

这是功能最全面的训练脚本,支持:

  • 多GPU分布式训练
  • 自动混合精度训练
  • 丰富的日志记录
  • 模型评估一体化

典型使用方式:

# 8 GPU训练
./train_net.py --num-gpus 8 \
  --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml

# 单GPU训练(需调整参数)
./train_net.py --num-gpus 1 \
  --config-file configs/...yaml \
  SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025

2. 简化训练脚本(plain_train_net.py)

这个版本更加轻量级,适合:

  • 快速原型开发
  • 自定义训练流程
  • 学习Detectron2训练机制

模型评估

训练完成后,可以使用以下命令评估模型性能:

./train_net.py \
  --config-file configs/...yaml \
  --eval-only MODEL.WEIGHTS /path/to/checkpoint

自定义训练数据

Detectron2支持多种数据格式,要使用自定义数据集需要:

  1. 按照标准格式组织数据
  2. 注册数据集
  3. 修改配置文件中的数据集参数

典型的数据集目录结构应包含:

  • 图像文件
  • 标注文件(COCO格式或自定义格式)
  • 数据集划分(train/val/test)

高级API使用

除了命令行工具,Detectron2还提供了丰富的Python API,可以实现:

  • 自定义模型架构
  • 特殊数据增强
  • 复杂训练流程
  • 模型部署优化

核心模块包括:

  • DefaultPredictor: 封装好的推理接口
  • DefaultTrainer: 可扩展的训练基类
  • DatasetMapper: 数据预处理管道
  • build_model: 模型构造器

性能调优建议

  1. 批量大小:根据GPU内存调整SOLVER.IMS_PER_BATCH
  2. 学习率:与批量大小线性相关(LR = BASE_LR * IMS_PER_BATCH / REFERENCE_BS)
  3. 数据加载:使用足够的工作进程(NUM_WORKERS)避免IO瓶颈
  4. 混合精度:启用AMP训练可减少显存占用

常见问题解决

  1. CUDA内存不足

    • 减小批量大小
    • 使用梯度累积
    • 启用AMP训练
  2. 数据加载慢

    • 增加NUM_WORKERS
    • 使用SSD存储数据
    • 预加载小数据集
  3. 训练不稳定

    • 检查学习率设置
    • 验证数据标注质量
    • 尝试更小的模型

Detectron2作为强大的视觉研究框架,既适合快速验证想法,也能支撑大规模生产应用。通过掌握这些基础使用方法,开发者可以高效地开展各类计算机视觉项目。

detectron2 Detectron2 is a platform for object detection, segmentation and other visual recognition tasks. detectron2 项目地址: https://gitcode.com/gh_mirrors/de/detectron2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈昊和

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值