JeelizAR 开源项目教程
项目介绍
JeelizAR 是一个开源的 JavaScript 库,专注于为开发者提供轻量级的增强现实(AR)解决方案。该项目利用卷积神经网络在 GPU 上通过 WebGL 运行,支持 WebXR 演示,适用于构建各种 AR 体验。JeelizAR 的特点包括跨平台兼容性、易用性、优秀的性能、可扩展性和实时反馈。
项目快速启动
安装
首先,克隆 JeelizAR 仓库到本地:
git clone https://github.com/jeeliz/jeelizAR.git
运行示例
进入项目目录并启动一个本地服务器来运行示例:
cd jeelizAR
python -m SimpleHTTPServer 8000 # 对于 Python 2
python -m http.server 8000 # 对于 Python 3
打开浏览器并访问 http://localhost:8000
,选择一个示例文件(如 index.html
)来查看 AR 效果。
基本代码示例
以下是一个简单的 HTML 文件示例,展示如何使用 JeelizAR:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>JeelizAR 示例</title>
<script src="https://cdn.jsdelivr.net/npm/@jeeliz/jeelizAR"></script>
</head>
<body>
<div id="ar-container"></div>
<script>
JeelizAR.init({
canvasId: 'ar-container',
detectionType: 'image',
imageUrl: 'path/to/your/image.png'
});
</script>
</body>
</html>
应用案例和最佳实践
娱乐
JeelizAR 可以用于创建互动游戏和体验,提升用户的沉浸感。例如,开发者可以创建一个基于 AR 的寻宝游戏,用户通过手机摄像头在现实世界中寻找虚拟宝藏。
广告营销
创新的广告形式可以通过 JeelizAR 实现,吸引用户的注意力并增强品牌印象。例如,品牌可以在其产品包装上添加 AR 元素,用户扫描后可以看到产品的 3D 模型或相关视频。
艺术设计
JeelizAR 可以将数字艺术融入真实环境,打造全新的艺术体验。艺术家可以创作 AR 艺术作品,观众通过手机或平板电脑在现实空间中欣赏这些作品。
典型生态项目
Jeeliz FaceFilter
Jeeliz FaceFilter 是一个主要的人脸检测和跟踪库,支持多脸跟踪,并为每个跟踪的脸提供旋转角度和嘴部张开因子。它非常适合构建类似 Snapchat 或 MSQRD 的面部滤镜,运行在浏览器中。
Weboji
Weboji 是一个基于深度学习的库,可以实时检测 11 种面部表情,并将其复制到一个 3D 头像上。它支持 THREE.js 渲染器,适用于开发基于面部表情的 AR 应用。
通过这些生态项目,JeelizAR 提供了丰富的功能和工具,帮助开发者构建多样化的 AR 应用。