开源项目EmbedRank: 无监督关键词组抽取使用句子嵌入的安装与使用指南

开源项目EmbedRank: 无监督关键词组抽取使用句子嵌入的安装与使用指南

ai-research-keyphrase-extractionEmbedRank: Unsupervised Keyphrase Extraction using Sentence Embeddings (official implementation)项目地址:https://gitcode.com/gh_mirrors/ai/ai-research-keyphrase-extraction

目录一:项目目录结构及介绍

该项目的主要目的是实现一种基于句子嵌入的无监督关键短语抽取算法(EmbedRank)。下面是主要目录结构及其简要说明:

  • src: 源代码所在主目录。

    • swisscom_ai: 包含该项目的核心模块。
      • research_keyphrase: 关键词研究相关的模块。
        • embeddings: 处理嵌入分布的方法,如emb_distrib_local.py.
        • model: 提供输入表示和方法,包括input_representation.pymethod.py, 其中包含MMRPhrase类用于关键短语抽取。
        • preprocessing: 预处理步骤,例如postagging.py用于词性标注。
        • util: 辅助工具,如fileIO.py用于文件操作。
  • launch.py: 主启动脚本,负责加载本地嵌入发布器和词性标注器,以及从文本提取关键字短语。

  • .gitignore: 忽略某些类型或名称的文件夹和文件,以避免将它们添加到Git仓库中。

  • README.md: 文档入口点,包含了项目描述,使用指南,许可证等重要信息。

  • LICENSE: 详细说明了Apache许可条款。


目录二:启动文件介绍

launch.py 是项目的主执行文件,其功能在于加载预训练模型、预处理器以及调用关键短语抽取函数。

模块导入和初始化设置

在文件开头,我们能看到几个必要的模块被导入,这些模块涵盖了配置读取、词性标注、句嵌入分配和关键短语抽取功能。

import argparse
from configparser import ConfigParser
from swisscom_ai.research_keyphrase.embeddings.emb_distrib_local import EmbeddingDistributorLocal
from swisscom_ai.research_keyphrase.model.input_representation import InputTextObj
from swisscom_ai.research_keyphrase.model.method import MMRPhrase
from swisscom_ai.research_keyphrase.preprocessing.postagging import PosTaggingCoreNLP
from swisscom_ai.research_keyphrase.util.fileIO import read_file

方法定义

接下来的部分定义了一个用于提取关键短语的方法 extract_keyphrases。此方法接收嵌入分配器对象 (embedding_distrib)、词性标注器 (ptagger)、原始文本 (raw_text)、候选数量 (N) 等参数,通过计算每项候选的关键度进行排序并返回结果列表。

实例化与运行

最后,在该文件中实例化并运行 load_local_embedding_distributor()load_local_corenlp_pos_tagger() 来获取所需的嵌入模型和词性标注器。利用这两个实例,我们能够对提供的文本 (raw_textraw_text2) 调用 extract_keyphrases 函数来执行关键短语的抽取任务。


目录三:配置文件介绍

尽管提供的代码片段没有直接展示具体的配置文件,但通常此类项目会依赖于.inijson格式的配置文件来进行参数调整。通常在config.ini或者相似命名的配置文件中保存着诸如数据路径、模型参数等重要信息。

格式

配置文件可以像下面这样组织:

[Model]
beta = 0.55
alias_threshold = 0.7

[Paths]
data_folder_path = ./data/

[Servers]
corenlp_host = localhost
corenlp_port = 9000

上述配置允许用户修改模型的行为细节,比如beta值影响关键词组选择策略;同时也能方便地调整路径变量和其他外部服务的连接设置。

以上是关于https://github.com/swisscom/ai-research-keyphrase-extraction.git项目的基本介绍和核心部分概述。若需深入理解其内部工作原理或者具体如何应用,建议阅读相关的研究论文或查阅官方文档以获取更详尽的信息。

如果您有任何疑问或需要进一步的帮助,请随时告知。我乐意为您提供支持!


: 基础框架和解释遵循Markdown语法标准,并确保每一部分内容围绕对应主题展开叙述。在提及技术概念时,尝试保留其专业术语的同时简化表述以便初学者容易理解,从而达到较好的可读性和实用性效果。


请注意本篇文档旨在提供对所给项目的基础理解和使用指导,对于更深度的功能探索和自定义配置要求参考原项目库及相关资料以获得最新、全面的支持信息。如果你在使用过程中遇到问题或有需求定制更多细节,请访问GitHub上的项目页面寻求帮助或联系维护者进行交流。

ai-research-keyphrase-extractionEmbedRank: Unsupervised Keyphrase Extraction using Sentence Embeddings (official implementation)项目地址:https://gitcode.com/gh_mirrors/ai/ai-research-keyphrase-extraction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丁凡红

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值