Kor 开源项目教程

Kor 开源项目教程

项目介绍

Kor 是一个用于从文本中提取结构化数据的工具,它利用大型语言模型(LLMs)来实现这一目标。Kor 允许用户指定提取数据的架构,并提供一些示例,然后生成一个提示,发送给指定的 LLM,并解析输出结果。Kor 与 LangChain 框架集成,提供了自然语言访问现有 API 的能力。

项目快速启动

安装

首先,通过 pip 安装 Kor:

pip install kor

基本使用

以下是一个简单的示例,展示如何使用 Kor 从文本中提取结构化数据:

from langchain.chat_models import ChatOpenAI
from kor import create_extraction_chain, Object, Text

# 初始化 LLM
llm = ChatOpenAI(
    model_name="gpt-3.5-turbo",
    temperature=0,
    max_tokens=2000,
    model_kwargs={
        'frequency_penalty': 0,
        'presence_penalty': 0,
        'top_p': 1.0
    }
)

# 定义提取架构
schema = Object(
    id="player",
    description=(
        "用户正在控制一个音乐播放器来选择歌曲、暂停或开始它们,或播放音乐"
    ),
    attributes=[
        Text(
            id="action",
            description="用户想要执行的操作,例如播放、暂停或停止",
            required=True
        )
    ]
)

# 创建提取链
chain = create_extraction_chain(llm, schema)

# 提取数据
result = chain.invoke("停止音乐现在")
print(result["validated_data"])

应用案例和最佳实践

数据提取

Kor 可以用于从文本中提取特定格式的数据,例如从用户请求中提取音乐播放器的操作指令。

自然语言访问 API

通过 Kor,可以实现自然语言访问现有 API,例如通过用户输入的自然语言指令来控制音乐播放器。

复杂结构提取

Kor 支持复杂的嵌套对象和列表,可以用于提取更复杂的结构化数据。

典型生态项目

LangChain

Kor 与 LangChain 框架集成,提供了强大的自然语言处理能力,使得开发者可以更方便地构建基于 LLM 的应用。

Pydantic

Kor 使用 Pydantic 进行数据验证,确保提取的数据符合预定义的架构。

Promptify

Promptify 是一个用于生成和优化提示的工具,与 Kor 结合使用可以提高数据提取的准确性和效率。

通过以上内容,您可以快速了解并开始使用 Kor 开源项目,结合实际应用案例和最佳实践,以及与其他生态项目的集成,进一步发挥 Kor 的潜力。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戚宾来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值