第三届融360天机智能金融算法挑战赛-第二题:特征挖掘指南
Rong360_2nd项目地址:https://gitcode.com/gh_mirrors/ro/Rong360_2nd
项目介绍
本项目源自第三届融360天机智能金融算法挑战赛的第二环节,专注于特征挖掘。参赛者需利用提供的数据集进行深入分析,通过社区聚类、特征选择等方法优化金融模型。项目基于Python环境,利用先进的数据分析库如Pandas、iGraph和XGBoost,旨在从海量用户关联数据中提取关键特征,以预测或评估金融风险。
项目快速启动
环境准备
确保你的开发环境中已安装以下必要的Python库:
- pandas
- igraph
- xgboost
- numpy
- scikit-learn
你可以通过pip安装这些依赖项:
pip install pandas igraph xgboost numpy scikit-learn
步骤一:克隆项目
在本地环境中克隆此项目仓库:
git clone https://github.com/Questions1/Rong360_2nd.git
cd Rong360_2nd
步骤二:运行示例
该仓库中的select_cluster.py
脚本展示了如何进行社区聚类并选取重要特征。要快速体验项目流程,首先确保你有必要的数据集(不在仓库中公开)。然后,可以尝试运行如下命令进行特征处理:
import pandas as pd
# 假设已有数据加载逻辑
# all_comm_dummy 是一个包含所有通信转换的DataFrame
# 'important_feature' 是从中筛选的重要特征列表
agg_2_important = all_comm_dummy[['id'] + list(important_feature)]
agg_2_important.to_csv('./output/agg_2_important.csv', index=False)
注意:实际运行前,你需要根据项目文档或数据预处理步骤填充all_comm_dummy
和important_feature
。
应用案例和最佳实践
在这个项目中,一个最佳实践是先通过Louvain算法对用户关联数据进行社区发现,接着对每个社区进行特征编码,并结合XGBoost进行特征的重要性评分。这种方法有效地减少了特征维度,同时保留了社交网络中的关键结构信息。确保在特征选择时,重视中介度、接近性等社会网络分析指标,这有助于捕捉用户间的潜在风险相关性。
典型生态项目
虽然具体生态系统内的其他项目未直接列出,但类似金融风控场景下的开源项目通常包括信用评估模型、异常检测系统以及基于机器学习的借贷风险预测工具。例如,“LightGBM”和“TensorFlow”在信用评级模型构建中也常被用作高效率的训练框架,而数据可视化工具如“D3.js”则可用于展示社区聚类结果或特征重要性的动态变化,增强项目理解和解释性。
本指南提供了一个基础框架,帮助开发者快速入门并理解融360天机智能金融算法挑战赛的第二题实践,从而深入探索复杂数据处理和特征工程在金融领域的应用。
Rong360_2nd项目地址:https://gitcode.com/gh_mirrors/ro/Rong360_2nd