NBFNet 开源项目教程

NBFNet 开源项目教程

NBFNetOfficial implementation of Neural Bellman-Ford Networks (NeurIPS 2021)项目地址:https://gitcode.com/gh_mirrors/nb/NBFNet

项目介绍

NBFNet(Neural Bellman-Ford Networks)是一个基于图神经网络的框架,专门用于链接预测任务。该项目灵感来源于传统的基于路径的方法,并结合了现代图神经网络的技术。NBFNet 在知识图谱补全、同构图链接预测和归纳关系预测等多种设置下表现出色。

项目快速启动

环境准备

首先,确保你已经安装了必要的依赖包。你可以通过以下命令安装:

pip install -r requirements.txt

代码示例

以下是一个简单的代码示例,展示如何使用 NBFNet 进行链接预测:

import torch
from nbfnet import NBFNet

# 初始化模型
model = NBFNet(num_entities=100, num_relations=10, embedding_dim=32)

# 示例输入数据
entities = torch.randint(0, 100, (10,))
relations = torch.randint(0, 10, (10,))

# 模型预测
predictions = model(entities, relations)
print(predictions)

应用案例和最佳实践

知识图谱补全

NBFNet 在知识图谱补全任务中表现优异。通过学习实体和关系之间的复杂交互,NBFNet 能够准确预测缺失的链接。以下是一个应用案例:

# 加载预训练模型
model = NBFNet.load_from_checkpoint('path_to_checkpoint')

# 示例查询
query_entity = 1
query_relation = 2

# 预测结果
result = model.predict(query_entity, query_relation)
print(result)

同构图链接预测

在同构图链接预测任务中,NBFNet 能够有效地捕捉节点之间的复杂关系。以下是一个最佳实践示例:

# 加载数据集
from nbfnet.datasets import load_dataset

dataset = load_dataset('cora')

# 训练模型
model.fit(dataset)

# 预测链接
predictions = model.predict_links(dataset)
print(predictions)

典型生态项目

PyG(PyTorch Geometric)

NBFNet 的实现依赖于 PyG(PyTorch Geometric),这是一个用于处理图数据的 PyTorch 库。PyG 提供了丰富的图神经网络模型和工具,是 NBFNet 的重要生态项目之一。

OGB(Open Graph Benchmark)

OGB 是一个大规模的图数据基准,提供了多种图数据集和评估标准。NBFNet 在 OGB 数据集上的表现证明了其在实际应用中的有效性。

通过结合这些生态项目,NBFNet 能够更好地适应不同的图数据和任务需求,提供更强大的链接预测能力。

NBFNetOfficial implementation of Neural Bellman-Ford Networks (NeurIPS 2021)项目地址:https://gitcode.com/gh_mirrors/nb/NBFNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温姬尤Lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值