Larq Compute Engine:优化二值化神经网络的推理引擎
项目基础介绍
Larq Compute Engine(LCE)是一个为部署极度量化的神经网络(如二值化神经网络,BNNs)而设计的高度优化推理引擎。该引擎目前支持各种移动平台,并在Pixel 1手机和Raspberry Pi上进行了性能基准测试。LCE 提供了一系列为支持指令集量身定制的 TensorFlow Lite 扩展操作符,这些操作符是用内联汇编或利用编译器内联特性以C++编写而成。主要编程语言为C++,辅以Python、MLIR等其他技术。
核心功能
- 无缝集成:LCE与Larq和TensorFlow的紧密集成,提供了从训练到部署的无缝体验。
- 预训练模型:提供了一系列Larq预训练的BNN模型,可用于常见的机器学习任务,并能与LCE即插即用。
- 优化转换器:LCE 提供了一个基于MLIR的模型转换器,与TensorFlow Lite完全兼容,并对Larq模型执行额外的网络级别优化。
- 性能优化:通过提供针对BNN模型的优化内核和网络级别优化,LCE能够在多种移动平台上实现高速的设备内机器学习推理。
最近更新的功能
根据项目的最新更新,具体新增功能包括但不限于以下几点:
- 性能优化:持续对现有操作符进行优化,提升在ARM架构下的推理性能。
- 新操作符支持:新增了对某些特定操作符的支持,以扩展LCE的应用范围和能力。
- 兼容性改进:提高了与最新TensorFlow Lite版本的兼容性。
- 错误修复和稳定性增强:解决了先前版本中的问题,增强了引擎的稳定性和可靠性。
Larq Compute Engine 的开发团队持续在性能、稳定性和兼容性方面进行改进,以满足社区和用户的需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考