清理公司名称的开源项目常见问题解决方案
cleanco Company Name Processor written in Python 项目地址: https://gitcode.com/gh_mirrors/cl/cleanco
基础介绍
cleanco
是一个用 Python 编写的开源项目,主要用于处理公司名称,提供清洗后的公司名称版本,去除表示组织类型的术语(如 "Ltd" 或 "Corp")。此外,它还提供了推断组织类型(例如 "有限责任公司" 或 "非营利组织")的工具,并根据术语信息推测组织可能设立的国家。
主要编程语言:Python
新手常见问题及解决步骤
问题一:如何安装 cleanco
问题描述: 新手可能不知道如何安装这个库。
解决步骤:
- 确保系统中已安装 pip。
- 在命令行中输入以下命令:
pip install cleanco
- 如果使用的是 zip 分发版,需要先解压缩文件,然后在命令行中进入解压后的目录。
- 对于 macOS 系统,在目录中输入以下命令并输入系统密码:
sudo python setup.py install
- 对于 Windows 系统,执行相同命令但无需使用
sudo
:python setup.py install
问题二:如何获取公司的基础名称
问题描述: 用户可能不清楚如何从完整公司名称中提取基础名称。
解决步骤:
- 导入
cleanco
中的basename
函数。from cleanco import basename
- 定义一个公司名称变量。
business_name = "Some Big Pharma, LLC"
- 使用
basename
函数获取基础名称。base_name = basename(business_name) print(base_name) # 输出:Some Big Pharma
- 如果名称中包含多个后缀,可能需要调用
basename()
函数两次以确保清理干净。
问题三:如何获取公司的类型和可能的国家
问题描述: 用户可能不知道如何获取公司的类型或可能的国家。
解决步骤:
- 使用
cleanco
中的typesources
和matches
函数获取公司类型。from cleanco import typesources, matches classification_sources = typesources() company_type = matches("Some Big Pharma, LLC", classification_sources) print(company_type) # 输出:['Limited Liability Company']
- 使用
cleanco
中的countrysources
和matches
函数获取可能的国家。from cleanco import countrysources, matches classification_sources = countrysources() possible_countries = matches("Some Big Pharma, LLC", classification_sources) print(possible_countries) # 输出:['United States of America', 'Philippines']
cleanco Company Name Processor written in Python 项目地址: https://gitcode.com/gh_mirrors/cl/cleanco