HyprPanel 安装与配置指南

HyprPanel 安装与配置指南

HyprPanel A Bar/Panel for Hyprland with extensive customizability. HyprPanel 项目地址: https://gitcode.com/gh_mirrors/hy/HyprPanel

1. 项目基础介绍

HyprPanel 是一个为 Hyprland 窗口管理器设计的面板,具有高度的可定制性。它使用 GTK3 进行构建,提供了一个美观且功能丰富的用户界面,用于显示系统信息、接收通知等。

2. 项目使用的关键技术和框架

  • GTK3: 用于构建图形用户界面的库。
  • AGS (Automatic Graphite Setup): 是一个帮助创建类似 macOS 系统界面的小工具,为 HyprPanel 提供了图形渲染和动画支持。
  • Nerdfonts: 特殊的字体,包含图标字符,用于显示面板上的图标。

3. 项目安装和配置的准备工作

在开始安装 HyprPanel 之前,请确保您的系统满足以下要求:

  • 操作系统: Linux (推荐 Arch Linux 或基于 Arch 的发行版)
  • Hyprland 窗口管理器: 已安装并配置好
  • 必要的依赖: 包括 ags, wireplumber, libgtop, bluez, bluez-utils, networkmanager, dart-sass, wl-clipboard, upower, gvfs 等依赖包

安装步骤

步骤 1: 克隆项目仓库

打开终端,运行以下命令克隆 HyprPanel 的 GitHub 仓库:

git clone https://github.com/Jas-SinghFSU/HyprPanel.git
步骤 2: 安装依赖

根据您的操作系统,使用以下命令安装必要的依赖:

对于 Arch Linux 或基于 Arch 的发行版:

sudo pacman -S --needed wireplumber libgtop bluez bluez-utils btop networkmanager dart-sass wl-clipboard brightnessctl swww python upower pacman-contrib power-profiles-daemon gvfs
yay -S --needed aylurs-gtk-shell-git grimblast-git wf-recorder-git hyprpicker matugen-bin python-gpustat hyprsunset-git
步骤 3: 编译安装 HyprPanel

进入克隆的项目目录,编译并安装 HyprPanel:

cd HyprPanel
meson setup build
meson compile -C build
meson install -C build
步骤 4: 安装字体

HyprPanel 使用 Nerdfonts 显示图标。在项目的 scripts 目录下运行以下脚本来安装字体:

./scripts/install_fonts.sh

安装字体后,需要重启 HyprPanel 以使字体生效。

步骤 5: 启动 HyprPanel

在终端中运行以下命令来启动 HyprPanel:

hyprpanel

或者,将 hyprpanel 添加到 Hyprland 配置文件 hyprland.conf 中的 exec-once 指令,以便在启动 Hyprland 时自动启动 HyprPanel。

完成以上步骤后,您应该已经成功安装并配置了 HyprPanel。现在可以开始使用并自定义您的面板了!

HyprPanel A Bar/Panel for Hyprland with extensive customizability. HyprPanel 项目地址: https://gitcode.com/gh_mirrors/hy/HyprPanel

数据集介绍:多品类农产品目标检测数据集 一、基础信息 数据集名称:多品类农产品目标检测数据集 图片数量: - 训练集:5,744张图片 - 验证集:546张图片 - 测试集:271张图片 总计:6,561张农业场景图片 分类类别: 覆盖33种常见农产品,包括苹果、香蕉、胡萝卜、番茄、西瓜等主流果蔬,以及甜椒、花椰菜、生姜、大豆等特色农作物,完整涵盖从根茎类到叶菜类的多样化需求。 标注格式: YOLO格式标注,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 农业场景实拍图像,包含自然光照条件下的单目标多目标检测场景,适用于真实农业环境下的模型训练。 二、适用场景 农业自动化分拣系统: 为果蔬分拣机器人提供视觉识别能力,支持多品类农产品同步检测,提升自动化产线分拣效率。 智能零售库存管理: 赋能商超智能货架系统,实现农产品自动识别库存统计,优化生鲜商品周转管理。 精准农业研究: 支持农作物生长监测AI系统开发,通过田间图像实时检测作物分布成熟度。 农业教育实训: 可作为农业院校AI+农学交叉学科的教学资源,培养智慧农业领域的复合型人才。 三、数据集优势 全品类覆盖: 包含33类全球主流农产品,特别涵盖辣椒、茄子、萝卜等易混淆品种,满足精细化检测需求。 真实场景适配: 数据采集自实际农业环境,包含果蔬堆叠、部分遮挡等复杂场景,确保模型落地实用性。 标注专业化: 采用农业专家参标注的质量控制机制,边界框精准匹配农产品形态特征。 框架兼容性: 原生支持YOLO系列模型训练,提供.txt标注文件图像文件的规范目录结构,开箱即用。 应用扩展性强: 除目标检测外,可通过标注转换支持农产品计数、体积估算等衍生应用场景开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羿漪沁Halbert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值