Hackintosh 项目教程

Hackintosh 项目教程

HackintoshHackintosh long-term maintenance model EFI and installation tutorial项目地址:https://gitcode.com/gh_mirrors/ha/Hackintosh

1. 项目的目录结构及介绍

Hackintosh 项目的目录结构通常包含多个文件夹和文件,每个部分都有其特定的用途。以下是该项目的目录结构及其介绍:

Hackintosh/
├── ACPI
│   ├── DSDT
│   ├── SSDT
│   └── ...
├── Drivers
│   ├── HFSPlus
│   ├── OpenRuntime
│   └── ...
├── Kexts
│   ├── AirportItlwm
│   ├── AppleALC
│   └── ...
├── OpenCore
│   ├── Config
│   ├── Resources
│   └── ...
├── Tools
│   ├── Hackintool
│   ├── MaciASL
│   └── ...
└── README.md
  • ACPI: 包含用于定制系统 ACPI 表的文件,如 DSDT 和 SSDT。
  • Drivers: 包含 OpenCore 引导加载程序使用的驱动程序,如 HFSPlus 和 OpenRuntime。
  • Kexts: 包含内核扩展文件,用于支持各种硬件,如 AirportItlwm 和 AppleALC。
  • OpenCore: 包含 OpenCore 引导加载程序的配置文件和资源。
  • Tools: 包含用于 Hackintosh 安装和调试的工具,如 Hackintool 和 MaciASL。
  • README.md: 项目的说明文档。

2. 项目的启动文件介绍

Hackintosh 项目的启动文件主要位于 OpenCore 目录下,以下是一些关键的启动文件及其介绍:

  • OpenCore.efi: OpenCore 引导加载程序的主文件。
  • config.plist: OpenCore 的配置文件,包含系统引导和硬件配置的详细信息。
  • BOOTx64.efi: 用于启动 macOS 的 EFI 文件。

3. 项目的配置文件介绍

config.plist 是 Hackintosh 项目中最重要的配置文件之一,它包含了系统引导和硬件配置的详细信息。以下是 config.plist 中一些关键部分的介绍:

  • ACPI: 配置 ACPI 表的加载顺序和选项。
  • Booter: 配置引导加载程序的行为,如 Quirks 和 MmioWhitelist。
  • DeviceProperties: 配置设备属性,如显卡和声卡的参数。
  • Kernel: 配置内核扩展的加载顺序和选项。
  • Misc: 配置杂项选项,如引导菜单和安全设置。
  • NVRAM: 配置 NVRAM 变量,如引导参数和系统变量。
  • PlatformInfo: 配置平台信息,如 SMBIOS 数据。
  • UEFI: 配置 UEFI 引导选项,如驱动程序和协议。

以上是 Hackintosh 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。

HackintoshHackintosh long-term maintenance model EFI and installation tutorial项目地址:https://gitcode.com/gh_mirrors/ha/Hackintosh

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束辉煊Darian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值