UNICOM 项目使用与配置指南
1. 项目目录结构及介绍
UNICOM 项目目录结构如下:
unicom/
├── .github/ # GitHub 工作流文件
├── docs/ # 文档文件夹
├── downstream/ # 下游任务相关文件
├── llava/ # LLaVA 相关文件
├── mlcd/ # MLCD 相关文件
├── scripts/ # 脚本文件
├── third_party/ # 第三方库和依赖
├── .gitignore # Git 忽略文件
├── CODE_OF_CONDUCT.md # 行为准则
├── LICENSE # 许可证文件
├── README.md # 项目说明文件
├── eval.sh # 评估脚本
├── infer.py # 推断脚本
├── pyproject.toml # Python 项目配置文件
├── requirements.txt # 项目依赖文件
.github/
: 包含 GitHub 工作流文件,用于自动化项目管理任务。docs/
: 包含项目文档,提供项目相关信息和使用说明。downstream/
: 包含下游任务相关代码和文件。llava/
: 包含 LLaVA 相关代码和文件,用于多模态语言模型的训练和评估。mlcd/
: 包含 MLCD 相关代码和文件,用于多标签聚类的对比学习。scripts/
: 包含项目运行所需的脚本文件。third_party/
: 包含项目依赖的第三方库和代码。.gitignore
: 指定 Git 忽略的文件和目录。CODE_OF_CONDUCT.md
: 项目行为准则,定义了项目参与者的行为规范。LICENSE
: 项目许可证文件,本项目采用 MIT 许可证。README.md
: 项目说明文件,介绍了项目的基本信息和使用方法。eval.sh
: 项目评估脚本,用于执行模型评估任务。infer.py
: 项目推断脚本,用于模型推断和结果展示。pyproject.toml
: Python 项目配置文件,定义了项目依赖和其他元数据。requirements.txt
: 项目依赖文件,列出了项目运行所需的 Python 包。
2. 项目的启动文件介绍
项目的主要启动文件是 infer.py
和 eval.sh
。
-
infer.py
: 用于执行模型的推断任务。用户可以通过指定模型目录和输入图像路径来运行此脚本,获取模型对图像的描述。示例运行命令:
CUDA_VISIBLE_DEVICES=0 python infer.py --model_dir DeepGlint-AI/MLCD-Embodied-7B
-
eval.sh
: 用于执行模型的评估任务。此脚本会调用lmms-eval
工具,对模型在特定任务上的性能进行评估。示例运行命令:
pip install lmms-eval==0.2.0 bash eval.sh
3. 项目的配置文件介绍
项目的主要配置文件是 pyproject.toml
和 requirements.txt
。
-
pyproject.toml
: Python 项目配置文件,定义了项目的元数据和依赖关系。用户可以在其中配置项目名称、版本、作者、依赖库等信息。 -
requirements.txt
: 列出了项目运行所需的 Python 包及其版本。用户可以通过运行以下命令来安装所有依赖:pip install -r requirements.txt
以上是 UNICOM 项目的基本目录结构、启动文件和配置文件的介绍。用户可以根据这些指南来使用和配置该项目。