UDify 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/ud/udify
1. 项目的目录结构及介绍
UDify 项目的目录结构如下:
udify/
├── config/
│ ├── ud/
│ │ ├── en/
│ │ └── multilingual/
│ └── sigmorphon/
│ └── multilingual/
├── data/
│ └── ud-treebanks-v2.3/
├── docs/
├── logs/
├── scripts/
├── udify/
├── .gitignore
├── LICENSE
├── README.md
├── archive_bert.py
├── concat_treebanks.py
├── create_vocabs.py
├── predict.py
├── requirements.txt
└── train.py
目录结构介绍
- config/: 包含项目的配置文件,分为
ud
和sigmorphon
两个子目录,分别用于不同的任务配置。 - data/: 存放数据集的目录,通常包含
ud-treebanks-v2.3
文件夹,用于存放 Universal Dependencies 数据集。 - docs/: 存放项目文档的目录。
- logs/: 存放训练日志和模型输出的目录。
- scripts/: 包含一些脚本文件,如数据下载和数据集合并的脚本。
- udify/: 项目的主要代码目录,包含模型的实现和相关工具。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- archive_bert.py: 用于处理 BERT 模型的脚本。
- concat_treebanks.py: 用于合并数据集的脚本。
- create_vocabs.py: 用于创建词汇表的脚本。
- predict.py: 用于预测的脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- train.py: 用于训练模型的脚本。
2. 项目的启动文件介绍
train.py
train.py
是 UDify 项目的主要启动文件之一,用于训练模型。可以通过以下命令启动训练:
python train.py --config config/ud/multilingual/udify_bert_finetune_multilingual.json --name multilingual
predict.py
predict.py
是另一个主要的启动文件,用于使用训练好的模型进行预测。可以通过以下命令启动预测:
python predict.py <archive> <input.conllu> <output.conllu> [--eval_file results.json]
3. 项目的配置文件介绍
config/ud/multilingual/udify_bert_finetune_multilingual.json
这是 UDify 项目的主要配置文件之一,用于配置多语言模型的训练参数。配置文件中包含以下关键参数:
- train_data_path: 训练数据的路径。
- validation_data_path: 验证数据的路径。
- test_data_path: 测试数据的路径。
- directory_path: 数据目录的路径。
- warmup_steps: 学习率预热步数。
- start_step: 开始步数。
config/sigmorphon/multilingual/udify_bert_sigmorphon_multilingual.json
这是用于 SIGMORPHON 2019 共享任务的配置文件,用于配置多语言形态学标记任务的训练参数。配置文件中包含类似的参数,但针对形态学标记任务进行了调整。
通过这些配置文件,用户可以根据自己的需求调整模型的训练和预测行为。