Auto-evaluator:自动化评估问答系统的利器
auto-evaluator 项目地址: https://gitcode.com/gh_mirrors/auto/auto-evaluator
项目介绍
Auto-evaluator
是一个专为问答系统(QA)设计的自动化评估工具。随着大型语言模型(LLM)在问答任务中的广泛应用,如何系统地评估这些系统的回答质量成为了一个重要课题。Auto-evaluator
通过结合模型生成的评估集和模型评级的评估方法,为用户提供了一个全面的QA系统评估平台。无论是预加载的演示文档,还是用户自定义的文档集,Auto-evaluator
都能自动生成问答测试集,并对指定的QA链进行自动评分,帮助用户优化QA系统的参数设置和组件选择。
项目技术分析
Auto-evaluator
的核心技术包括:
-
文档检索:使用LangChain的抽象概念,构建一个能够根据问题返回相关文档的检索器。用户可以通过配置选择不同的检索方法,如FAISS、SVM或TF-IDF。
-
测试集生成:利用LangChain的
QAGenerationChain
自动生成问答对测试集。用户可以选择是否提供自定义的测试集,若未提供,系统将自动生成。 -
LLM问答:通过
RetrievalQA
链,从检索器中获取与问题相关的文档块,并将其传递给LLM进行答案合成。 -
模型评级评估:用户可以选择不同的评级提示,评估检索文档的相关性和LLM生成答案的相似性。系统会根据选择的提示生成评估结果。
-
实验结果总结:系统会生成一个包含问题、预期答案、生成答案、检索和答案的二进制评分、延迟时间以及模型评级输出的总结表格。
项目及技术应用场景
Auto-evaluator
适用于以下场景:
-
QA系统开发与优化:开发者在构建或优化问答系统时,可以使用
Auto-evaluator
进行系统性评估,快速发现并解决系统中的问题,如幻觉现象或答案质量不佳。 -
文档问答:对于需要从大量文档中提取信息的场景,
Auto-evaluator
可以帮助用户自动生成问答对,并评估系统的回答质量,确保信息的准确性和相关性。 -
教育与培训:在教育领域,
Auto-evaluator
可以用于自动生成练习题和答案,帮助学生进行自我评估,同时教师也可以利用该工具评估学生的回答质量。
项目特点
-
自动化评估:
Auto-evaluator
能够自动生成测试集并进行评估,大大减少了人工评估的工作量。 -
灵活配置:用户可以根据需求配置不同的参数,如块大小、重叠字符数、嵌入方法、检索器类型等,以优化QA系统的性能。
-
多模型支持:支持多种LLM模型和检索方法,用户可以根据具体需求选择最适合的模型和方法。
-
可视化结果:系统生成的评估结果以表格和图表的形式展示,直观易懂,便于用户分析和优化。
-
易于扩展:项目采用模块化设计,用户可以轻松添加新的模型、检索方法或评级提示,以满足不断变化的需求。
结语
Auto-evaluator
是一个功能强大且易于使用的自动化评估工具,适用于各种问答系统的开发与优化。无论你是开发者、研究人员,还是教育工作者,Auto-evaluator
都能帮助你快速评估和优化问答系统,提升系统的性能和用户体验。快来尝试吧,让你的问答系统更上一层楼!
auto-evaluator 项目地址: https://gitcode.com/gh_mirrors/auto/auto-evaluator