GetPy 项目使用教程
getpyA Vectorized Python Dict/Set项目地址:https://gitcode.com/gh_mirrors/ge/getpy
项目介绍
GetPy 是一个高性能的 Python 字典/集合库,它通过绑定 Parallel Hashmap 和 PyBind11 来实现快速运行和低内存开销。GetPy 旨在集成到 Python 科学计算生态系统中,提供优于标准 Python 字典和集合的性能。
项目快速启动
安装
首先,你需要安装 GetPy。可以通过 pip 进行安装:
pip install getpy
基本使用
以下是一个简单的示例,展示如何使用 GetPy 字典:
import getpy as gp
# 创建一个 GetPy 字典
gp_dict = gp.Dict([(1, "value1"), (2, "value2")])
# 访问和修改字典
print(gp_dict[1]) # 输出: value1
gp_dict[3] = "value3"
print(gp_dict) # 输出: {1: 'value1', 2: 'value2', 3: 'value3'}
应用案例和最佳实践
大数据处理
GetPy 特别适合用于处理大数据集,其高效的哈希表实现可以显著减少内存使用和提高查找速度。例如,在处理大规模数据集时,使用 GetPy 可以加速数据查找和处理:
import getpy as gp
# 假设我们有一个大型的键值对列表
large_data = [(i, f"value{i}") for i in range(10**6)]
# 使用 GetPy 字典
gp_dict = gp.Dict(large_data)
# 快速查找
print(gp_dict[999999]) # 输出: value999999
多线程环境
GetPy 的实现支持多线程环境,可以在多个线程中安全地访问和修改字典,适用于并发编程场景:
import threading
import getpy as gp
gp_dict = gp.Dict()
def add_items(start, end):
for i in range(start, end):
gp_dict[i] = f"value{i}"
# 创建多个线程并行添加数据
threads = []
for i in range(10):
t = threading.Thread(target=add_items, args=(i*100000, (i+1)*100000))
threads.append(t)
t.start()
for t in threads:
t.join()
print(len(gp_dict)) # 输出: 1000000
典型生态项目
GetPy 可以与许多 Python 科学计算库结合使用,例如 NumPy、Pandas 和 SciPy。以下是一些典型的生态项目:
- NumPy: 用于数值计算,可以与 GetPy 结合进行高效的数组操作和查找。
- Pandas: 用于数据分析,GetPy 可以作为 Pandas 数据框的高效索引结构。
- SciPy: 用于科学计算,GetPy 可以加速 SciPy 中的数据结构操作。
通过结合这些库,GetPy 可以在科学计算和数据分析领域发挥重要作用,提供更高效的数据处理能力。
getpyA Vectorized Python Dict/Set项目地址:https://gitcode.com/gh_mirrors/ge/getpy