iDisc:引领单目深度估计新篇章

iDisc:引领单目深度估计新篇章

idisc iDisc: Internal Discretization for Monocular Depth Estimation [CVPR 2023] idisc 项目地址: https://gitcode.com/gh_mirrors/id/idisc

项目介绍

iDisc(Internal Discretization for Monocular Depth Estimation)是一个创新的深度学习框架,旨在解决单目深度估计中的挑战。单目深度估计对于3D场景理解至关重要,但在监督学习设置下,由于缺乏几何约束,这一任务仍然具有挑战性。iDisc利用内部离散化(Internal Discretization)的概念,将场景隐式地划分为一组高级概念,从而学习到场景的内在结构。

项目技术分析

iDisc的核心在于内部离散化模块,它通过一个连续-离散-连续瓶颈结构实现,无需监督即可学习到场景的高级模式。这种方法不同于现有技术,因为它不强制对深度输出施加任何显式约束或先验。整个网络与内部离散化模块可以端到端地训练,得益于基于注意力的瓶颈模块。

iDisc在多个数据集上表现出色,包括KITTI和NYU-Depth v2,并在官方KITTI基准测试中排名第一。它不仅在深度估计方面取得了显著成果,还在表面法线估计任务上达到了最先进水平。

项目技术应用场景

iDisc的应用场景广泛,包括但不限于自动驾驶、机器人导航、增强现实和虚拟现实等领域。以下是几个具体的应用场景:

  1. 自动驾驶系统:在自动驾驶汽车中,准确的单目深度估计对于安全驾驶至关重要,iDisc可以帮助车辆更好地理解周围环境。
  2. 机器人导航:在复杂环境中,iDisc可以帮助机器人更精确地感知其周围的三维空间,从而更安全、更有效地导航。
  3. 增强现实/虚拟现实:在AR/VR应用中,iDisc可以为用户提供一个更真实的三维体验,增强沉浸感和交互性。

项目特点

iDisc具有以下显著特点:

  1. 内部离散化:利用连续-离散-连续瓶颈结构学习场景的高级模式,无需监督。
  2. 无约束深度输出:iDisc不强制对深度输出施加任何显式约束或先验,使得模型更加灵活。
  3. 端到端训练:基于注意力的瓶颈模块使得整个网络可以端到端地训练,简化了训练流程。
  4. 广泛适用性:iDisc不仅在深度估计上表现出色,还可以应用于表面法线估计等多个相关任务。
  5. 零样本测试能力:iDisc在零样本测试中表现出色,证明了其强大的泛化能力。

以下是iDisc在KITTI和NYUv2数据集上的性能表现:

| Backbone | d0.5 | d1 | d2 | RMSE | RMSE log | A.Rel | Sq.Rel | Config | Weights | Predictions | |-------------|------|------|------|------|----------|-------|--------|--------|---------|------------| | Resnet101 | 0.860| 0.965| 0.996| 2.362| 0.090 | 0.059 | 0.197 | | | | | EfficientB5 | 0.852| 0.963| 0.994| 2.510| 0.094 | 0.063 | 0.223 | | | | | Swin-Tiny | 0.870| 0.968| 0.996| 2.291| 0.087 | 0.058 | 0.184 | | | | | Swin-Base | 0.885| 0.974| 0.997| 2.149| 0.081 | 0.054 | 0.159 | | | | | Swin-Large | 0.896| 0.977| 0.997| 2.067| 0.077 | 0.050 | 0.145 | | | |

| Backbone | d1 | d2 | d3 | RMSE | A.Rel | Log10 | Config | Weights | Predictions | |-------------|------|------|------|------|-------|-------|--------|---------|------------| | Resnet101 | 0.892| 0.983| 0.995| 0.380| 0.109 | 0.046 | | | | | EfficientB5 | 0.903| 0.986| 0.997| 0.369| 0.104 | 0.044 | | | | | Swin-Tiny | 0.894| 0.983| 0.996| 0.377| 0.109 | 0.045 | | | | | Swin-Base | 0.926| 0.989| 0.997| 0.327| 0.091 | 0.039 | | | | | Swin-Large | 0.940| 0.993| 0.999| 0.313| 0.086 | 0.037 | | | |

iDisc不仅为深度估计领域带来了新的视角,还在实际应用中展现出了其强大的性能和泛化能力。无论是自动驾驶还是虚拟现实,iDisc都将成为这些领域不可或缺的工具之一。

idisc iDisc: Internal Discretization for Monocular Depth Estimation [CVPR 2023] idisc 项目地址: https://gitcode.com/gh_mirrors/id/idisc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁烈廷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值