推荐篇:探索Tableau REST API的无限可能——rest-api-samples项目解析

推荐篇:探索Tableau REST API的无限可能——rest-api-samples项目解析

rest-api-samplestableau/rest-api-samples: Tableau REST API Samples 是一组示例代码,展示了如何通过Tableau REST API与Tableau Server或Tableau Online进行交互,包括数据提取、工作簿管理、用户权限控制等操作。项目地址:https://gitcode.com/gh_mirrors/re/rest-api-samples

项目介绍

欢迎来到rest-api-samples的世界,这是一个专为数据爱好者和开发者设计的宝藏仓库。本项目由Tableau官方支持,包含了Python和Java两大编程语言的示例代码,以及可用于直接调用REST API的Postman集合。通过这些资源,你可以轻松学会如何利用Tableau REST API与你的数据进行互动,无论是管理服务器上的工作簿、视图,还是自动化报告任务,都变得轻而易举。

项目技术分析

rest-api-samples立足于强大的Tableau REST API之上,这一接口允许开发者通过HTTP请求访问Tableau服务器或Tableau Online中的元数据和资源。Python和Java的样本代码覆盖了从基础到进阶的所有操作,使得无论是新手还是经验丰富的开发者都能迅速上手。尤其是结合了Tableau Server Client Python库,更是大大降低了学习曲线,让你能快速开发出高效的数据管理工具。

应用场景

此项目不仅仅是一个学习资源库,更是实现自动化和集成的强大工具箱:

  • 数据资产管理:自动化报表发布、更新,监控工作簿状态。
  • 权限管理和用户同步:批量处理用户权限设置,同步企业目录服务。
  • 自定义数据管道:构建个性化的数据导入、导出流程,提升数据分析效率。
  • 集成系统:将Tableau嵌入企业应用中,提供无缝的数据可视化体验。

项目特点

  1. 全面性:覆盖Python与Java双语种示例,满足不同开发背景的需求。
  2. 官方支持:享有Tableau官方的支持级别,确保了项目的可靠性与持续更新。
  3. 实战导向:每个示例都是解决实际问题的工具,易于理解与实践。
  4. 版本兼容说明:明确指出API版本对应关系,帮助选择适合自己的API版本。
  5. 社区互动:通过“ Issues ”功能,不仅可以报告问题,也可请求新样例,甚至贡献自己的代码。

在这个数据驱动的时代,rest-api-samples项目如同一把开启Tableau高级功能的钥匙,无论你是数据工程师、分析师或是IT管理员,它都将是你不可或缺的工具箱之一。立刻加入,释放数据潜能,简化工作流程,探索Tableau与数据世界的更深联系。开始你的Tableau REST API之旅,挖掘数据背后的无限故事吧!


Markdown 格式输出结束

rest-api-samplestableau/rest-api-samples: Tableau REST API Samples 是一组示例代码,展示了如何通过Tableau REST API与Tableau Server或Tableau Online进行交互,包括数据提取、工作簿管理、用户权限控制等操作。项目地址:https://gitcode.com/gh_mirrors/re/rest-api-samples

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时煜青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值