CAMEL 项目使用教程
1. 项目介绍
CAMEL(Communicative Agents for “Mind” Exploration of Large Language Model Society)是一个多智能体框架,旨在探索大规模语言模型社会中的通信智能体。该项目通过角色扮演的方式,利用引导提示(inception prompting)来指导聊天智能体完成任务,同时保持与人类意图的一致性。CAMEL 提供了一个可扩展的方法来研究多智能体系统的合作行为和能力,并开源了相关库以支持通信智能体的研究。
2. 项目快速启动
2.1 安装 CAMEL
从 PyPI 安装
pip install camel-ai
从源码安装
# 克隆 GitHub 仓库
git clone https://github.com/camel-ai/camel.git
# 进入项目目录
cd camel
# 安装 poetry
pip install poetry
# 激活虚拟环境
poetry shell
# 安装 CAMEL 库
poetry install
2.2 设置 OpenAI API 密钥
在运行示例代码之前,需要设置 OpenAI API 密钥。
在 Bash 中设置
export OPENAI_API_KEY=<你的 OpenAI API 密钥>
export OPENAI_API_BASE_URL=<你的 OpenAI API 基础 URL>
在 Windows 命令提示符中设置
set OPENAI_API_KEY=<你的 OpenAI API 密钥>
set OPENAI_API_BASE_URL=<你的 OpenAI API 基础 URL>
在 Windows PowerShell 中设置
$env:OPENAI_API_KEY="<你的 OpenAI API 密钥>"
$env:OPENAI_API_BASE_URL="<你的 OpenAI API 基础 URL>"
2.3 运行示例代码
python examples/ai_society/role_playing.py
3. 应用案例和最佳实践
3.1 角色扮演示例
CAMEL 提供了一个示例,展示了两个 ChatGPT 智能体如何通过角色扮演的方式合作开发一个股票交易机器人。这个示例展示了如何通过引导提示来指导智能体完成任务。
3.2 自定义角色和任务
用户可以根据自己的需求自定义角色和任务。例如,可以创建一个 Python 程序员和一个股票交易员的角色,并设置初始提示来引导他们合作开发一个交易算法。
4. 典型生态项目
4.1 Apache Camel
Apache Camel 是一个开源的集成框架,帮助用户快速轻松地集成各种系统,消费或生产数据。Camel 支持多种数据格式,适用于金融、电信、医疗保健等多个领域。
4.2 Apache Camel K
Apache Camel K 是一个轻量级的集成框架,原生运行在 Kubernetes 上。它允许用户在云原生环境中快速部署和运行 Camel 应用。
4.3 Apache Camel Quarkus
Apache Camel Quarkus 将 280 多个 Camel 组件打包为 Quarkus 扩展,使得 Camel 应用可以更高效地运行在 Quarkus 平台上。
4.4 Apache Camel Kafka Connector
Apache Camel Kafka Connector 将 Camel 嵌入到 Kafka Connect 中,使得用户可以利用 Camel 的强大功能来处理 Kafka 流数据。