LaDI-VTON 使用教程
1. 项目介绍
LaDI-VTON 是一个基于 Latent Diffusion 和 Textual-Inversion 技术的虚拟试衣模型。该模型能够利用先进的生成网络技术,为电子商务和元宇宙领域提供更加真实的虚拟试衣体验。LaDI-VTON 通过结合扩散模型和自编码器模块,实现了在保持模特特征的同时,生成穿着店内商品的全新图像。
2. 项目快速启动
快速启动 LaDI-VTON 项目,请按照以下步骤操作:
环境准备
推荐使用 Anaconda 包管理器以避免依赖和重复性问题。对于 Linux 系统,您可以在此处找到 Anaconda 安装指南。
克隆仓库
git clone https://github.com/miccunifi/ladi-vton.git
安装 Python 依赖
创建一个新的 conda 环境,并安装所需的 Python 包:
conda env create -n ladi-vton -f environment.yml
conda activate ladi-vton
或者,您可以手动创建一个新的 conda 环境,并逐个安装所需的包:
conda create -n ladi-vton -y python=3.10
conda activate ladi-vton
pip install torch==2.0.1 torchvision==0.15.2 opencv-python==4.7.0.72 diffusers==0.14.0 transformers==4.27.3 accelerate==0.18.0 clean-fid==0.1.35 torchmetrics[image]==0.11.4 wandb==0.14.0 matplotlib==3.7.1 tqdm xformers
数据准备
根据项目需求下载数据集,并准备好相应的文件夹结构。
运行推理
运行以下命令以在 Dress Code 或 VITON-HD 数据集上进行推理:
python src/inference.py --dataset [dresscode|vitonhd] --dresscode_dataroot <path> --vitonhd_dataroot <path> --output_dir <path> --test_order [paired|unpaired] --category [all|lower_body|upper_body|dresses] --mixed_precision [no|fp16|bf16] --enable_xformers_memory_efficient_attention --use_png --compute_metrics
请替换 <path>
为您的数据集根目录路径,并根据需要调整其他参数。
3. 应用案例和最佳实践
- 数据集准备:确保使用具有白色背景的店内图像,以提高模型的性能。
- 模型训练:在准备好的数据集上训练模型,以适应特定的虚拟试衣任务。
- 性能评估:在测试集上评估模型的性能,使用提供的指标计算工具进行度量。
4. 典型生态项目
LaDI-VTON 可以与电子商务平台、元宇宙环境和增强现实应用无缝集成,为用户提供更加沉浸式的购物体验。开发者可以在此基础上构建更多创新的应用案例,如虚拟试衣间、个性化服装推荐系统等。