LaDI-VTON 使用教程

LaDI-VTON 使用教程

ladi-vton This is the official repository for the paper "LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On". ACM Multimedia 2023 ladi-vton 项目地址: https://gitcode.com/gh_mirrors/la/ladi-vton

1. 项目介绍

LaDI-VTON 是一个基于 Latent Diffusion 和 Textual-Inversion 技术的虚拟试衣模型。该模型能够利用先进的生成网络技术,为电子商务和元宇宙领域提供更加真实的虚拟试衣体验。LaDI-VTON 通过结合扩散模型和自编码器模块,实现了在保持模特特征的同时,生成穿着店内商品的全新图像。

2. 项目快速启动

快速启动 LaDI-VTON 项目,请按照以下步骤操作:

环境准备

推荐使用 Anaconda 包管理器以避免依赖和重复性问题。对于 Linux 系统,您可以在此处找到 Anaconda 安装指南。

克隆仓库

git clone https://github.com/miccunifi/ladi-vton.git

安装 Python 依赖

创建一个新的 conda 环境,并安装所需的 Python 包:

conda env create -n ladi-vton -f environment.yml
conda activate ladi-vton

或者,您可以手动创建一个新的 conda 环境,并逐个安装所需的包:

conda create -n ladi-vton -y python=3.10
conda activate ladi-vton
pip install torch==2.0.1 torchvision==0.15.2 opencv-python==4.7.0.72 diffusers==0.14.0 transformers==4.27.3 accelerate==0.18.0 clean-fid==0.1.35 torchmetrics[image]==0.11.4 wandb==0.14.0 matplotlib==3.7.1 tqdm xformers

数据准备

根据项目需求下载数据集,并准备好相应的文件夹结构。

运行推理

运行以下命令以在 Dress Code 或 VITON-HD 数据集上进行推理:

python src/inference.py --dataset [dresscode|vitonhd] --dresscode_dataroot <path> --vitonhd_dataroot <path> --output_dir <path> --test_order [paired|unpaired] --category [all|lower_body|upper_body|dresses] --mixed_precision [no|fp16|bf16] --enable_xformers_memory_efficient_attention --use_png --compute_metrics

请替换 <path> 为您的数据集根目录路径,并根据需要调整其他参数。

3. 应用案例和最佳实践

  • 数据集准备:确保使用具有白色背景的店内图像,以提高模型的性能。
  • 模型训练:在准备好的数据集上训练模型,以适应特定的虚拟试衣任务。
  • 性能评估:在测试集上评估模型的性能,使用提供的指标计算工具进行度量。

4. 典型生态项目

LaDI-VTON 可以与电子商务平台、元宇宙环境和增强现实应用无缝集成,为用户提供更加沉浸式的购物体验。开发者可以在此基础上构建更多创新的应用案例,如虚拟试衣间、个性化服装推荐系统等。

ladi-vton This is the official repository for the paper "LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On". ACM Multimedia 2023 ladi-vton 项目地址: https://gitcode.com/gh_mirrors/la/ladi-vton

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌崧铖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值