HVM 项目使用教程
HVM 在Rust中实现的高度并行、最佳功能运行时 项目地址: https://gitcode.com/gh_mirrors/hv/HVM
1. 项目介绍
HVM(Higher-order Virtual Machine 2)是一个大规模并行的交互组合器评估器。通过将高级语言(如 Python 和 Haskell)编译到 HVM,用户可以在大规模并行硬件(如 GPU)上直接运行这些语言,并实现接近理想的加速效果。HVM2 是 HVM1 的继任者,相比其前身,HVM2 更简单、更快,最重要的是,更加正确。
HVM 提供了一个低级 IR 语言,用于指定 HVM2 网络,并提供了一个编译器,可以将该语言编译为 C 和 CUDA。它不是为直接人类使用而设计的,如果你正在寻找一个与 HVM2 交互的高级语言,请查看 Bend。
2. 项目快速启动
2.1 安装依赖
在开始之前,请确保安装了以下依赖:
- 如果你想使用 C 运行时,请安装一个兼容 C11 的编译器,如 GCC 或 Clang。
- 如果你想使用 CUDA 运行时,请安装 CUDA 和 nvcc(CUDA 编译器)。HVM 需要 CUDA 12.x,并且目前仅支持 Nvidia GPU。
2.2 安装 HVM2
使用以下命令安装 HVM2:
cargo install hvm
2.3 运行 HVM 程序
HVM 提供了多种运行程序的方式:
-
通过 Rust 解释器运行:
hvm run <file.hvm>
-
通过 C 解释器运行:
hvm run-c <file.hvm>
-
通过 CUDA 解释器运行:
hvm run-cu <file.hvm>
-
编译为独立的 C 程序:
hvm gen-c <file.hvm>
-
编译为独立的 CUDA 程序:
hvm gen-cu <file.hvm>
所有模式都会产生相同的输出。编译模式需要你手动编译生成的文件(例如使用 gcc file.c -o file
),但运行速度更快。CUDA 版本具有更高的峰值性能,但稳定性较低。通常情况下,建议在生产环境中使用 gen-c
。
3. 应用案例和最佳实践
3.1 递归求和示例
以下是一个递归求和的 HVM 程序示例:
@main = a & @sum ~ (28 (0 a))
@sum = ( (((a a) @sum__C0) b) b)
@sum__C0 = ([c a] ([$([*2] $([+1] d)) $([*2] $([+0] b))] f)) &
@sum ~ (a (b $([+] $(e f)))) &
@sum ~ (c (d e))
这个程序实现了一个递归求和功能。如果你觉得这个语法难以阅读,不用担心,它并不是为人类直接使用而设计的。Bend 是人类可读的语言,应该被终端用户和希望将 HVM 作为目标的语言使用。
3.2 最佳实践
- 使用
gen-c
进行生产环境部署:由于gen-c
模式生成的代码稳定性较高,建议在生产环境中使用此模式。 - 避免在生产环境中使用 CUDA 模式:虽然 CUDA 模式性能较高,但其稳定性较差,不建议在生产环境中使用。
4. 典型生态项目
4.1 Bend
Bend 是一个与 HVM2 交互的高级语言,它提供了更友好的语法和更高级的功能,适合终端用户和开发者使用。
4.2 HVM1
HVM1 是 HVM2 的前身,虽然已经被 HVM2 取代,但仍然可以作为参考项目,了解 HVM 的发展历程。
4.3 HVM 社区
HVM 社区提供了丰富的资源和支持,包括文档、教程和社区论坛,帮助开发者更好地理解和使用 HVM。
通过以上内容,你应该已经对 HVM 项目有了基本的了解,并能够快速启动和使用该项目。如果你有更多问题或需要进一步的帮助,请参考 HVM 的官方文档或加入 HVM 社区。
HVM 在Rust中实现的高度并行、最佳功能运行时 项目地址: https://gitcode.com/gh_mirrors/hv/HVM