Hoaxy-Backend 开源项目教程
1、项目介绍
Hoaxy-Backend 是一个用于追踪社交媒体上声明和事实核查扩散的平台。该项目由两部分组成:前端和后端。本教程主要关注后端部分,即 Hoaxy-Backend。后端负责处理所有繁重的任务,包括数据收集、处理和存储。前端则通过调用后端 API 来可视化声明和事实核查的传播情况。
2、项目快速启动
环境准备
Hoaxy-Backend 推荐使用 Python 3.7 及以上版本。建议使用虚拟环境来安装依赖项。
# 创建虚拟环境
python3 -m venv hoaxy-env
# 激活虚拟环境
source hoaxy-env/bin/activate
# 安装依赖
pip install -r requirements.txt
初始化项目
在启动后端服务之前,需要初始化项目并加载要追踪的站点信息。
hoaxy init
启动后端服务
按照以下步骤启动 Hoaxy-Backend 服务:
- 获取最新的文章 URL:
hoaxy crawl --fetch-url --update
- (可选)获取所有文章 URL:
hoaxy crawl --fetch-url --archive
- 启动 Lucene 索引:
hoaxy index
- 启动 API:
hoaxy api
3、应用案例和最佳实践
应用案例
Hoaxy-Backend 可以用于追踪和分析社交媒体上的虚假信息传播。例如,研究机构可以使用 Hoaxy 来追踪特定声明在 Twitter 上的传播路径,并分析其与事实核查的关系。
最佳实践
- 数据收集:定期更新数据,确保追踪的信息是最新的。
- 索引优化:根据需求调整 Lucene 索引的配置,以提高搜索效率。
- API 使用:合理使用 API,避免频繁请求导致服务器负载过高。
4、典型生态项目
- Hoaxy-Frontend:Hoaxy 的前端部分,用于可视化声明和事实核查的传播情况。项目地址:Hoaxy-Frontend
- Twitter API:Hoaxy-Backend 支持追踪 Twitter 上的分享数据,因此 Twitter API 是该项目的重要依赖。
通过以上步骤,您可以快速启动并使用 Hoaxy-Backend 项目,追踪和分析社交媒体上的声明和事实核查的传播情况。