推荐系统开源项目:Recommendarr 使用教程
1. 项目介绍
Recommendarr 是一个基于机器学习的个性化推荐系统,它可以分析用户的媒体服务器(如 Sonarr, Radarr, Plex, Jellyfin 等)中的库和观看历史信息,为用户提供个性化的电视剧和电影推荐。该系统支持多种 AI 模型,包括 OpenAI 和本地模型,以及自定义推荐数量和模型参数等功能。
2. 项目快速启动
使用 Docker
Option 1: 直接运行 Docker 镜像(最简单)
# 拉取并运行,默认端口为 3000
docker run -d \
--name recommendarr \
-p 3000:3000 \
-v recommendarr-data:/app/server/data \
tannermiddleton/recommendarr:latest
# 或者运行自定义端口(例如,8080)
docker run -d \
--name recommendarr \
-e PORT=8080 \
-p 8080:8080 \
-v recommendarr-data:/app/server/data \
tannermiddleton/recommendarr:latest
启动后,在浏览器中访问 http://localhost:3000
(或你自定义的端口)。
默认登录信息:
- 用户名:admin
- 密码:1234
重要提示: 首次登录后请立即更改密码以确保安全。
Option 2: 使用 Docker Compose
# 克隆仓库(包含 docker-compose.yml 文件)
git clone https://github.com/fingerthief/recommendarr.git
cd recommendarr
# 启动应用
docker-compose up -d
这将:
- 拉取预构建的 Docker 镜像
- 配置网络和持久化
- 启动统一服务
启动后,在浏览器中访问 http://localhost:3000
(或你自定义的端口)。
Option 3: 自定义构建 Docker 镜像
# 克隆仓库
git clone https://github.com/fingerthief/recommendarr.git
cd recommendarr
# 构建 Docker 镜像
docker build -t recommendarr:local .
# 运行容器默认端口
docker run -d \
--name recommendarr \
-p 3000:3000 \
-v recommendarr-data:/app/server/data \
recommendarr:local
# 或者运行自定义端口
docker run -d \
--name recommendarr \
-e PORT=8080 \
-p 8080:8080 \
-v recommendarr-data:/app/server/data \
recommendarr:local
Option 4: 手动安装
对于开发或不想使用 Docker 的情况:
# 克隆仓库
git clone https://github.com/fingerthief/recommendarr.git
cd recommendarr
# 安装依赖
npm install
# 构建前端
npm run build
# 启动统一服务
npm run unified
启动后,在浏览器中访问 http://localhost:3000
(或你自定义的端口)。
3. 应用案例和最佳实践
- 案例:用户通过连接 Sonarr 和 Radarr,以及 Plex 或 Jellyfin 等媒体服务器,使用 Recommendarr 获得基于其观看历史的个性化推荐。
- 最佳实践:确保定期更新媒体库和观看历史,以便推荐系统能够提供最准确的结果。
4. 典型生态项目
- Sonarr:用于管理和自动下载电视剧的媒体服务器。
- Radarr:用于管理和自动下载电影的媒体服务器。
- Plex:一个广泛使用的媒体服务器和客户端应用程序,支持多种设备上的流媒体播放。
- Jellyfin:一个免费的开源媒体服务器,类似于 Plex,支持多种客户端。
通过整合这些项目,Recommendarr 能够为用户提供更加个性化和丰富的媒体推荐体验。