PDF 解析库性能基准测试:选择最适合你的工具
benchmarks Benchmarking PDF libraries 项目地址: https://gitcode.com/gh_mirrors/benchma/benchmarks
项目介绍
在处理PDF文件时,选择合适的解析库至关重要。不同的库在性能、功能和易用性上各有千秋。为了帮助开发者做出明智的选择,我们推出了“PDF Library Benchmarks”项目。该项目专注于纯PDF文件的读取性能测试,不涉及扫描文档或OCR处理。通过详细的性能数据,开发者可以直观地了解各库的优劣,从而选择最适合自己需求的工具。
项目技术分析
测试环境
- 硬件: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
- 输入文档: 14个不同大小和页数的PDF文件,涵盖了从284.8KiB到14.7MiB的文件大小,以及从7页到134页的文档长度。
测试库
项目中测试了9个主流的PDF解析库,包括:
- Borb: 支持AGPL/商业许可,最新版本2.1.16。
- pypdfium2: 支持Apache-2.0或BSD-3-Clause许可,最新版本4.18.0。
- pdfminer.six: 支持MIT/X许可,最新版本20221105。
- pdfplumber: 支持MIT许可,最新版本0.10.2。
- pdfrw: 支持MIT许可,最新版本0.4。
- pdftotext: 支持GPL许可,最新版本0.86.1。
- PyMuPDF: 支持GNU AFFERO GPL 3.0/商业许可,最新版本1.23.1。
- pypdf: 支持BSD 3-Clause许可,最新版本3.15.4。
- Tika: 支持Apache v2许可,最新版本2.6.0。
测试结果
通过详细的文本提取速度测试,我们得出了各库在不同文档上的平均处理时间。结果显示,PyMuPDF 在大多数文档上的处理速度最快,平均仅需0.1秒;而 pypdf 和 pdfminer.six 在处理较大文档时表现相对较慢。
项目及技术应用场景
应用场景
- 学术研究: 研究人员需要快速提取PDF中的文本数据进行分析。
- 企业文档处理: 企业需要自动化处理大量PDF文档,如合同、报告等。
- 数据挖掘: 数据科学家需要从PDF文档中提取结构化数据进行进一步分析。
技术选择建议
- 高性能需求: 推荐使用 PyMuPDF 或 pypdfium2,它们在处理速度上表现优异。
- 功能丰富: 如果需要更多的功能(如文本定位、图像提取等),可以考虑 pdfplumber 或 pdfminer.six。
- 跨平台支持: Tika 提供了强大的跨平台支持,适合需要在不同环境中运行的项目。
项目特点
1. 全面的性能测试
项目涵盖了多个主流PDF解析库,提供了详细的性能数据,帮助开发者做出明智的选择。
2. 多样化的输入文档
测试文档涵盖了不同大小和页数的PDF文件,确保测试结果的全面性和代表性。
3. 开源与商业支持
测试的库中既有开源项目,也有支持商业许可的工具,满足不同用户的需求。
4. 持续更新
项目将持续更新,纳入更多PDF解析库和最新的性能数据,确保信息的时效性和准确性。
通过“PDF Library Benchmarks”项目,开发者可以轻松找到最适合自己需求的PDF解析工具,提升工作效率,减少开发成本。立即访问项目仓库,获取最新的性能数据和使用指南!
benchmarks Benchmarking PDF libraries 项目地址: https://gitcode.com/gh_mirrors/benchma/benchmarks