EduKTM 项目使用教程
EduKTM The Model Zoo of Knowledge Tracing Models 项目地址: https://gitcode.com/gh_mirrors/ed/EduKTM
1. 项目目录结构及介绍
EduKTM 项目的目录结构如下:
EduKTM/
├── docs/
│ ├── AKT.md
│ └── ...
├── examples/
│ ├── KPT/
│ ├── EKPT/
│ ├── DKT/
│ └── ...
├── src/
│ ├── models/
│ ├── utils/
│ └── ...
├── config/
│ ├── config.yaml
│ └── ...
├── README.md
├── LICENSE
└── ...
目录介绍
- docs/: 包含项目的文档文件,如
AKT.md
等。 - examples/: 包含各种模型的示例代码,如
KPT/
,EKPT/
,DKT/
等。 - src/: 包含项目的源代码,如
models/
和utils/
。 - config/: 包含项目的配置文件,如
config.yaml
。 - README.md: 项目的介绍文件。
- LICENSE: 项目的许可证文件。
2. 项目启动文件介绍
EduKTM 项目的启动文件通常位于 src/
目录下。具体启动文件可能因不同的模型而异,但一般会有一个主入口文件来启动整个项目。
例如,启动 AKT
模型的文件可能位于 src/models/AKT/
目录下,文件名为 run_akt.py
。
启动步骤
- 进入项目根目录。
- 运行启动文件,例如:
python src/models/AKT/run_akt.py
3. 项目的配置文件介绍
EduKTM 项目的配置文件通常位于 config/
目录下,文件名为 config.yaml
。
配置文件内容
配置文件 config.yaml
可能包含以下内容:
model: AKT
data_path: /path/to/data
output_path: /path/to/output
learning_rate: 0.001
batch_size: 32
epochs: 10
配置项介绍
- model: 指定要使用的模型,如
AKT
。 - data_path: 数据文件的路径。
- output_path: 输出结果的路径。
- learning_rate: 学习率。
- batch_size: 批处理大小。
- epochs: 训练的轮数。
通过修改 config.yaml
文件中的配置项,可以调整模型的训练参数和数据路径。
以上是 EduKTM 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
EduKTM The Model Zoo of Knowledge Tracing Models 项目地址: https://gitcode.com/gh_mirrors/ed/EduKTM