最先进的音乐标记模型项目教程

最先进的音乐标记模型项目教程

sota-music-tagging-models sota-music-tagging-models 项目地址: https://gitcode.com/gh_mirrors/so/sota-music-tagging-models

1. 项目介绍

本项目是基于PyTorch框架实现的一系列最先进的音乐标记模型,这些模型能够对音乐音频进行自动标记。项目包含了多种不同的模型架构,如FCN、Musicnn、Sample-level CNN、CRNN等,旨在提供不同的解决方案,以适应各种规模的数据集和不同的性能需求。

2. 项目快速启动

环境准备

首先,您需要创建一个Python虚拟环境并安装必要的依赖:

conda create -n YOUR_ENV_NAME python=3.7
conda activate YOUR_ENV_NAME
pip install -r requirements.txt

数据预处理

将音频文件转换为.npy格式,以便模型可以读取:

cd preprocessing/
python -u mtat_read.py run YOUR_DATA_PATH

模型训练

进入训练目录,开始模型的训练:

cd training/
python -u main.py --data_path YOUR_DATA_PATH

您可以通过以下选项调整训练过程:

  • --num_workers: 设置用于数据加载的子进程数。
  • --dataset: 选择数据集,如'mtat', 'msd', 'jamendo'。
  • --model_type: 选择模型类型,如fcn, musicnn, crnn等。
  • --n_epochs: 设置训练的总轮数。
  • --batch_size: 设置每个批次的样本数。
  • --lr: 设置学习率。
  • --use_tensorboard: 是否使用Tensorboard进行可视化。
  • --model_save_path: 模型保存的路径。
  • --model_load_path: 加载预训练模型的路径。
  • --data_path: 数据集的路径。
  • --log_step: 设置日志记录的步数。

模型评估

训练完成后,您可以通过以下命令对模型进行评估:

cd training/
python -u eval.py --data_path YOUR_DATA_PATH

同样,您可以通过上述的选项来调整评估过程。

3. 应用案例和最佳实践

  • 小数据集: 对于相对较小的数据集,建议使用Musicnn模型,它利用了领域知识,能够提供更好的性能。
  • 简单高效的模型: 如果您需要一个简单但性能最好的模型,可以选择Short-chunk CNN带有残差连接的模型。
  • 通用性强的模型: 如果需要模型具有更强的泛化能力,建议使用Harmonic CNN。

4. 典型生态项目

本项目作为音乐自动标记的开源项目,可以与其他音乐信息检索、音频处理相关项目结合使用,例如音乐推荐系统、音乐风格分析工具等,共同构建一个更加完善的音乐技术生态。

sota-music-tagging-models sota-music-tagging-models 项目地址: https://gitcode.com/gh_mirrors/so/sota-music-tagging-models

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

符汝姿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值