Lockpick_RCM 项目使用教程

Lockpick_RCM 项目使用教程

项目地址:https://gitcode.com/gh_mirrors/lo/Lockpick_RCM

项目介绍

Lockpick_RCM 是一个针对 Nintendo Switch 的裸机负载,用于导出加密密钥,以便在处理 Switch 文件的软件中使用,如 hactool、ChoiDujour 等,而无需启动 Horizon OS。由于固件 7.0.0 的更改,Lockpick 自制软件无法再导出最新的密钥。然而,在启动时环境中,没有这样的限制。

项目快速启动

环境准备

  1. 确保你的 Nintendo Switch 已经进行了 mod 操作。
  2. 下载并安装 Hekate 的最新版本,并将 Minerva 放置在 SD 卡上以获得最佳性能,特别是在导出 titlekeys 时。

使用步骤

  1. 将 Lockpick_RCM.bin 文件放置在 SD 卡的根目录。
  2. 使用你喜欢的 payload injector 或 chainloader 启动 Lockpick_RCM.bin。
  3. 完成后,密钥将保存在 SD 卡的 /switch/prod.keys/switch/title.keys 文件中。
# 示例命令,用于启动 Lockpick_RCM
./payload_injector Lockpick_RCM.bin

应用案例和最佳实践

应用案例

Lockpick_RCM 主要用于以下场景:

  • 导出 Nintendo Switch 的加密密钥,以便进行游戏备份和文件处理。
  • 在开发和测试自制软件时,获取必要的加密密钥。

最佳实践

  1. 定期更新:随着 Nintendo Switch 固件的更新,确保使用最新版本的 Lockpick_RCM 以支持最新的密钥导出。
  2. 安全存储:导出的密钥包含敏感信息,确保它们存储在安全的位置,避免泄露。
  3. 合法使用:仅在合法范围内使用导出的密钥,遵守相关法律法规。

典型生态项目

Lockpick_RCM 作为 Nintendo Switch 自制软件生态系统的一部分,与其他项目协同工作,如:

  • Hactool:用于处理和解密 Nintendo Switch 文件的工具。
  • ChoiDujour:用于更新 Nintendo Switch 固件的工具。
  • Atmosphère-NX:一个功能强大的自制固件,提供多种增强功能和安全特性。

这些项目共同构成了一个丰富的生态系统,为 Nintendo Switch 用户和开发者提供了广泛的自定义和控制选项。

Lockpick_RCM Lockpick_RCM 项目地址: https://gitcode.com/gh_mirrors/lo/Lockpick_RCM

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林菁琚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值