告别阻塞!FastAPI-MCP异步处理并发MCP工具调用的实现方案
你是否在使用FastAPI构建MCP(模型上下文协议)工具时遇到过并发请求处理的性能瓶颈?是否因为同步处理导致用户体验下降?本文将深入解析fastapi_mcp项目如何通过异步处理机制高效应对并发MCP工具调用,帮助你一文掌握零配置下的异步优化方案。读完本文,你将了解FastAPI-MCP的异步架构设计、核心实现代码以及实际应用示例,轻松解决高并发场景下的性能问题。
项目概述
fastapi_mcp是一款零配置工具,能够自动将FastAPI端点公开为MCP工具,其核心优势在于高效的异步处理能力,确保在高并发MCP工具调用场景下依然保持出色性能。项目结构清晰,主要包含以下关键模块:
- 核心代码:fastapi_mcp/
- 传输层实现:fastapi_mcp/transport/
- 官方文档:docs/getting-started/quickstart.mdx
- 示例代码:examples/
异步架构设计
fastapi_mcp的异步处理能力源于其精心设计的传输层架构,主要通过HTTP和SSE(服务器发送事件)两种传输方式实现高效并发处理。
架构概览
HTTP传输异步实现
HTTP传输的异步处理核心在fastapi_mcp/transport/http.py中实现,通过FastApiHttpSessionManager
类管理异步会话,关键机制包括:
- 延迟初始化:仅在首次请求时启动会话管理器,减少资源占用
- 后台任务运行:使用
asyncio.create_task
创建后台任务运行会话管理器 - 非阻塞请求处理:通过异步回调捕获响应,避免请求阻塞
关键代码实现:
async def run_session_manager():
try:
async with self._session_manager.run():
logger.info("StreamableHTTP session manager is running")
# 保持运行直到被取消
await asyncio.Event().wait()
except asyncio.CancelledError:
logger.info("StreamableHTTP session manager is shutting down")
raise
SSE传输异步实现
SSE传输的异步处理在fastapi_mcp/transport/sse.py中实现,FastApiSseTransport
类通过以下方式实现高效异步通信:
- 后台任务发送:使用FastAPI的
BackgroundTasks
异步发送消息 - 安全消息发送:通过
_send_message_safely
方法避免消息发送过程中的异常导致整个连接崩溃 - 会话管理:通过会话ID跟踪和管理长期连接
关键代码实现:
# 创建后台任务发送消息
background_tasks = BackgroundTasks()
metadata = ServerMessageMetadata(request_context=request)
session_message = SessionMessage(message, metadata=metadata)
background_tasks.add_task(self._send_message_safely, writer, session_message)
并发处理关键技术
异步会话管理
fastapi_mcp通过StreamableHTTPSessionManager
实现高效的异步会话管理,支持会话持久化和并发请求处理。fastapi_mcp/transport/http.py中的_ensure_session_manager_started
方法确保会话管理器仅在需要时启动,并在后台持续运行:
async def _ensure_session_manager_started(self) -> None:
if self._manager_started:
return
async with self._startup_lock:
if self._manager_started:
return
# 创建并启动会话管理器
self._session_manager = StreamableHTTPSessionManager(
app=self.mcp_server,
event_store=self.event_store,
json_response=self.json_response,
stateless=False, # 支持会话
security_settings=self.security_settings,
)
# 在后台任务中运行会话管理器
self._manager_task = asyncio.create_task(run_session_manager())
self._manager_started = True
非阻塞请求处理
在HTTP传输中,handle_fastapi_request
方法通过异步委托处理请求,使用回调函数捕获响应,实现完全非阻塞的请求处理流程:
async def handle_fastapi_request(self, request: Request) -> Response:
# 确保会话管理器已启动
await self._ensure_session_manager_started()
# 捕获响应的回调函数
async def send_callback(message):
nonlocal response_started, response_status, response_headers, response_body
if message["type"] == "http.response.start":
response_started = True
response_status = message["status"]
response_headers = message.get("headers", [])
elif message["type"] == "http.response.body":
response_body += message.get("body", b"")
# 委托给会话管理器处理请求
await self._session_manager.handle_request(request.scope, request.receive, send_callback)
# 转换为FastAPI响应并返回
headers_dict = {name.decode(): value.decode() for name, value in response_headers}
return Response(
content=response_body,
status_code=response_status,
headers=headers_dict,
)
安全的消息发送机制
SSE传输中的_send_message_safely
方法确保消息在异步发送过程中不会导致整个连接崩溃,通过异常捕获和转换机制增强系统稳定性:
async def _send_message_safely(
self, writer: MemoryObjectSendStream[SessionMessage], message: Union[SessionMessage, ValidationError]
):
try:
if isinstance(message, ValidationError):
# 将验证错误转换为JSONRPC错误
error_data = ErrorData(
code=-32700, # JSON-RPC解析错误代码
message="Parse error",
data={"validation_error": str(message)},
)
json_rpc_error = JSONRPCError(
jsonrpc="2.0",
id="unknown",
error=error_data,
)
error_message = SessionMessage(JSONRPCMessage(root=json_rpc_error))
await writer.send(error_message)
else:
await writer.send(message)
except Exception as e:
logger.error(f"向写入器发送消息时出错: {e}")
实际应用示例
基本使用示例
examples/01_basic_usage_example.py展示了如何快速创建一个支持异步处理的MCP服务:
from fastapi import FastAPI
from fastapi_mcp import McpServer
app = FastAPI()
mcp_server = McpServer(app)
@app.get("/items/{item_id}")
async def read_item(item_id: int, q: str = None):
return {"item_id": item_id, "q": q}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
自定义MCP路由示例
examples/06_custom_mcp_router_example.py演示了如何自定义MCP路由同时保持异步处理能力:
from fastapi import APIRouter, FastAPI
from fastapi_mcp import McpServer
app = FastAPI()
router = APIRouter()
mcp_server = McpServer(app, router_prefix="/custom-mcp")
@router.get("/custom-endpoint")
async def custom_endpoint():
return {"message": "This is a custom MCP endpoint with async support"}
app.include_router(router)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
配置HTTP超时示例
examples/07_configure_http_timeout_example.py展示了如何配置异步请求超时,防止长时间运行的请求阻塞系统:
from fastapi import FastAPI
from fastapi_mcp import McpServer
from fastapi_mcp.transport.http import FastApiHttpSessionManager
app = FastAPI()
# 配置HTTP传输超时
mcp_server = McpServer(
app,
transport_settings={"http": {"timeout": 10.0}} # 10秒超时
)
@app.get("/long-running-task")
async def long_running_task():
# 模拟长时间运行的异步任务
import asyncio
await asyncio.sleep(5)
return {"status": "completed"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
性能优化建议
连接池管理
通过配置适当的连接池大小,可以显著提升并发处理能力。在创建McpServer
时可以通过transport_settings
调整相关参数:
mcp_server = McpServer(
app,
transport_settings={
"http": {
"max_connections": 100, # 最大连接数
"keepalive_timeout": 30 # 连接保持超时
}
}
)
合理设置超时
根据业务需求合理设置请求超时,避免长时间运行的请求占用过多资源,参考examples/07_configure_http_timeout_example.py。
监控与调优
通过日志监控异步处理性能,重点关注以下指标:
- 会话创建/销毁频率
- 请求处理延迟
- 后台任务队列长度
相关日志配置可在项目配置文件中调整,具体可参考docs/configurations/customization.mdx。
总结与展望
fastapi_mcp通过精心设计的异步架构,利用FastAPI和asyncio的强大能力,为MCP工具调用提供了高效的并发处理方案。核心优势包括:
- 零配置异步支持:无需额外配置即可获得异步处理能力
- 双传输层实现:HTTP和SSE两种传输方式满足不同场景需求
- 稳健的错误处理:完善的异常捕获和转换机制确保系统稳定性
未来,fastapi_mcp将继续优化异步处理性能,计划引入更多高级特性如自动负载均衡、动态资源调整等,进一步提升在高并发场景下的表现。
如果你在使用过程中遇到任何问题,可参考docs/getting-started/FAQ.mdx或提交issue参与社区讨论。
希望本文能帮助你更好地理解和使用fastapi_mcp的异步处理能力,构建高性能的MCP工具服务!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考