OpenDelta 开源项目使用教程

OpenDelta 开源项目使用教程

OpenDeltaA plug-and-play library for parameter-efficient-tuning (Delta Tuning)项目地址:https://gitcode.com/gh_mirrors/op/OpenDelta

一、项目目录结构及介绍

OpenDelta 是一个基于 Transformer 的模型微调框架,旨在简化和增强深度学习模型的迁移学习过程。下面是该项目的基本目录结构及其简介:

OpenDelta/
 ├── LICENSE
 ├── README.md          # 项目介绍和快速入门指南
 ├── examples           # 示例代码,包括不同任务的微调示例
 │   └── ...
 ├── opendelta         # 核心库代码
 │   ├── __init__.py
 │   ├── layers.py      # 自定义层或修改过的Transformer层
 │   ├── modeling.py    # 模型架构相关定义
 │   ├── utils.py       # 辅助工具函数
 ├── tests              # 单元测试
 ├── requirements.txt   # 项目依赖列表
 └── setup.py           # 安装脚本

二、项目的启动文件介绍

OpenDelta 中,并没有直接定义一个全局的“启动文件”,但项目的运行通常始于示例脚本或通过自定义脚本来调用核心库的功能。例如,在 examples 目录下,你可以找到各种用于模型微调的脚本,如 bert_finetuning.py。这些脚本展示了如何加载预训练模型、准备数据集并进行微调。

python examples/bert_finetuning.py --help

上述命令将显示该脚本的用法和可选参数,是了解如何启动微调任务的一个入口点。

三、项目的配置文件介绍

尽管直接的配置文件概念不那么明显,但 OpenDelta 的灵活性很大程度上依赖于命令行参数和可能的配置文件(通常是YAML格式)来指定模型设置、训练参数等。配置的设定多是动态的,通过脚本参数传递。例如,在进行微调时,你可以通过命令行指定预训练模型路径、数据集位置、学习率等参数。

对于更复杂的场景,配置可能会涉及创建特定的配置文件来管理这些设置。这通常需要参照项目中的示例或通过阅读源码文档来实现定制化配置。虽然直接提供一个固定的配置文件路径不是标准操作,但鼓励用户根据需要构造自己的配置结构,利用Python字典或者外部文件来组织这些信息。

在实际应用中,推荐查看具体示例中的参数使用和官方文档(如果有的话),以获得如何设置配置的详细指导。


以上内容概括了 OpenDelta 的基本结构、启动流程和配置要点,为开发者提供了入手该项目的初步指引。深入学习和实践将根据具体需求进一步探索其丰富的功能和灵活性。

OpenDeltaA plug-and-play library for parameter-efficient-tuning (Delta Tuning)项目地址:https://gitcode.com/gh_mirrors/op/OpenDelta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆或愉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值