Neural Testbed 项目教程
neural_testbed 项目地址: https://gitcode.com/gh_mirrors/ne/neural_testbed
1. 项目目录结构及介绍
neural_testbed/
├── agents/
│ ├── factories/
│ └── ...
├── experiments/
│ └── run.py
├── statics/
│ └── images/
├── github/
│ └── workflows/
├── .gitignore
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── setup.py
└── test.sh
目录结构介绍
- agents/: 包含基准代理的实现,特别是
factories/
目录下有各种代理的工厂类。 - experiments/: 包含运行实验的脚本,如
run.py
。 - statics/: 包含静态资源,如图片等。
- github/: 包含 GitHub 工作流配置文件。
- .gitignore: Git 忽略文件配置。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目许可证。
- README.md: 项目介绍和使用说明。
- setup.py: 项目安装脚本。
- test.sh: 测试脚本。
2. 项目启动文件介绍
experiments/run.py
run.py
是项目的启动文件,用于运行实验。它定义了如何运行一个代理在给定的测试问题上的实验。
def run(agent: testbed_base.TestbedAgent, problem: testbed_base.TestbedProblem) -> testbed_base.ENNQuality:
"""Run an agent on a given testbed problem."""
enn_sampler = agent(problem.train_data, problem.prior_knowledge)
return problem.evaluate_quality(enn_sampler)
使用方法
可以通过命令行直接运行代理:
python -m neural_testbed.experiments.run --agent_name=mlp
默认情况下,结果会保存到 /tmp/neural_testbed
目录下。可以通过命令行参数控制其他选项。
3. 项目的配置文件介绍
setup.py
setup.py
是项目的安装配置文件,用于定义项目的依赖和安装过程。
from setuptools import setup, find_packages
setup(
name='neural_testbed',
version='0.1',
packages=find_packages(),
install_requires=[
# 依赖列表
],
entry_points={
'console_scripts': [
'neural_testbed_run=neural_testbed.experiments.run:main',
],
},
)
使用方法
可以通过以下命令安装项目:
pip install .
.gitignore
.gitignore
文件用于指定 Git 应该忽略的文件和目录,避免将不必要的文件提交到版本控制中。
CONTRIBUTING.md
CONTRIBUTING.md
文件提供了项目的贡献指南,帮助开发者了解如何为项目做出贡献。
LICENSE
LICENSE
文件包含了项目的开源许可证信息,通常是 Apache-2.0 许可证。
README.md
README.md
文件是项目的介绍文档,包含了项目的基本信息、安装指南、使用说明等。
neural_testbed 项目地址: https://gitcode.com/gh_mirrors/ne/neural_testbed