开源项目 `dotnet/machinelearning` 使用教程

开源项目 dotnet/machinelearning 使用教程

machinelearningdotnet/machinelearning: .NET Machine Learning库是微软提供的一个跨平台机器学习框架,适用于.NET开发者构建ML模型和解决方案。它包含了多种机器学习算法、模型训练和评估功能。项目地址:https://gitcode.com/gh_mirrors/ma/machinelearning

1. 项目的目录结构及介绍

dotnet/machinelearning 项目的目录结构如下:

/dotnet/machinelearning
├── src
│   ├── Microsoft.ML
│   ├── Microsoft.ML.Data
│   ├── Microsoft.ML.KMeansClustering
│   ├── Microsoft.ML.PCA
│   └── ...
├── test
│   ├── Microsoft.ML.Tests
│   ├── Microsoft.ML.Data.Tests
│   ├── Microsoft.ML.KMeansClustering.Tests
│   └── ...
├── tools
├── docs
├── samples
└── ...

目录介绍

  • src: 包含项目的源代码,按模块划分,如 Microsoft.ML 是核心库,Microsoft.ML.Data 是数据处理模块等。
  • test: 包含项目的单元测试代码,每个模块都有对应的测试文件夹。
  • tools: 包含项目开发和构建过程中使用的工具。
  • docs: 包含项目的文档,如 API 文档、用户指南等。
  • samples: 包含示例代码,帮助用户理解如何使用该项目。

2. 项目的启动文件介绍

项目的启动文件通常位于 src 目录下,具体位置取决于项目的结构。以下是一个典型的启动文件示例:

using Microsoft.ML;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        // 创建 MLContext
        var context = new MLContext();

        // 加载数据
        IDataView dataView = context.Data.LoadFromTextFile<MyData>("data.csv", separatorChar: ',');

        // 定义数据处理和训练管道
        var pipeline = context.Transforms.Concatenate("Features", nameof(MyData.Feature1), nameof(MyData.Feature2))
            .Append(context.Transforms.NormalizeMinMax("Features"))
            .Append(context.Transforms.Concatenate("Label", nameof(MyData.Label)))
            .Append(context.Transforms.Conversion.MapValueToKey("Label"))
            .Append(context.MulticlassClassification.Trainers.SdcaMaximumEntropy())
            .Append(context.Transforms.Conversion.MapKeyToValue("PredictedLabel"));

        // 训练模型
        var model = pipeline.Fit(dataView);

        // 评估模型
        var predictions = model.Transform(dataView);
        var metrics = context.MulticlassClassification.Evaluate(predictions);

        // 输出评估结果
        Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy}");
        Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy}");
        Console.WriteLine($"Log Loss: {metrics.LogLoss}");
    }
}

public class MyData
{
    public float Feature1 { get; set; }
    public float Feature2 { get; set; }
    public string Label { get; set; }
}

启动文件介绍

  • MLContext: 是 ML.NET 的核心类,用于创建和管理 ML.NET 的上下文。
  • IDataView: 用于加载和处理数据。
  • Pipeline: 定义数据处理和模型训练的流程。
  • Model: 通过 Fit 方法训练得到。
  • Evaluation: 通过 Evaluate 方法评估模型的性能。

3. 项目的配置文件介绍

项目的配置文件通常位于项目的根目录或 src 目录下,常见的配置文件包括 appsettings.jsondotnet-tools.json

appsettings.json

{
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft": "Warning",
      "Microsoft.Hosting.Lifetime": "Information"
    }
  },
  "AllowedHosts": "*",
  "Data": {
    "DefaultConnection": "Server=localhost;Database=MyDatabase;User Id=myUsername;Password=myPassword;"
  }
}

dotnet-tools.json

{
  "version": 1,
  "isRoot": true,
  "tools": {
    "dotnet-ef": {
      "version": "5.0.0

machinelearningdotnet/machinelearning: .NET Machine Learning库是微软提供的一个跨平台机器学习框架,适用于.NET开发者构建ML模型和解决方案。它包含了多种机器学习算法、模型训练和评估功能。项目地址:https://gitcode.com/gh_mirrors/ma/machinelearning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴剑苹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值