PLBART 开源项目使用教程

PLBART 开源项目使用教程

PLBART Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021]. PLBART 项目地址: https://gitcode.com/gh_mirrors/pl/PLBART

1. 项目介绍

PLBART(Program Understanding and Generation)是一个用于程序理解和生成的统一预训练模型。它是一个序列到序列的Transformer模型,预训练在大量的Java和Python函数以及自然语言描述上,这些数据来源于GitHub和StackOverflow。PLBART通过去噪自编码(DAE)进行预训练,并使用了三种噪声策略:标记掩码、标记删除和标记填充。

PLBART的主要目标是解决代码理解和生成任务,包括代码摘要、代码生成、代码翻译、代码精炼、克隆检测和缺陷检测等。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了Anaconda。然后,下载项目的依赖项:

bash install_env.sh

2.2 数据准备

2.2.1 下载GitHub数据

进入data/github目录,并按照指示下载数据。

cd data/github
# 按照README中的指示下载数据
2.2.2 下载StackOverflow数据

进入data/stackoverflow目录,并按照指示下载数据。

cd data/stackoverflow
# 按照README中的指示下载数据

2.3 数据二值化和预训练

cd pretrain
bash binarize.sh
bash pretrain.sh GPU_IDS

2.4 微调

以文本到代码任务为例,进行微调:

cd scripts/text_to_code
bash prepare.sh
bash run.sh GPU_IDS

3. 应用案例和最佳实践

3.1 代码摘要

PLBART可以用于生成代码的摘要,帮助开发者快速理解代码的功能。

3.2 代码生成

通过输入自然语言描述,PLBART可以生成相应的代码片段。

3.3 代码翻译

PLBART支持不同编程语言之间的代码翻译,例如将Java代码翻译为C#代码。

3.4 代码精炼

PLBART可以帮助开发者精炼代码,使其更加简洁和高效。

3.5 克隆检测

PLBART可以用于检测代码库中的重复代码片段,帮助开发者识别和消除代码冗余。

3.6 缺陷检测

PLBART可以用于检测代码中的潜在缺陷,帮助开发者提前发现和修复问题。

4. 典型生态项目

4.1 Fairseq

Fairseq是一个用于序列到序列任务的工具包,PLBART基于Fairseq进行开发。

4.2 CodeXGLUE

CodeXGLUE是一个用于代码理解和生成的基准数据集,PLBART在其上进行了大量的实验和评估。

4.3 TransCoder

TransCoder是一个用于代码翻译的模型,PLBART借鉴了其部分技术。

通过以上步骤,你可以快速上手PLBART项目,并利用其强大的功能进行代码理解和生成任务。

PLBART Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021]. PLBART 项目地址: https://gitcode.com/gh_mirrors/pl/PLBART

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农芬焰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值