深入理解OpenAI Agents Python SDK中的追踪功能

深入理解OpenAI Agents Python SDK中的追踪功能

openai-agents-python A lightweight, powerful framework for multi-agent workflows openai-agents-python 项目地址: https://gitcode.com/gh_mirrors/op/openai-agents-python

追踪(Tracing)是现代AI应用开发中不可或缺的调试和监控工具。OpenAI Agents Python SDK内置了强大的追踪功能,能够全面记录代理运行过程中的各种事件。本文将深入解析这一功能,帮助开发者更好地利用它来优化和监控AI代理的工作流程。

追踪功能概述

追踪功能默认开启,它会自动记录代理运行过程中的关键事件,包括:

  • LLM生成过程
  • 工具调用
  • 交接操作
  • 护栏检查
  • 自定义事件

这些数据对于调试、性能分析和监控AI工作流至关重要。通过可视化界面,开发者可以直观地了解代理的执行路径和性能表现。

核心概念解析

追踪(Trace)与跨度(Span)

追踪系统基于两个核心概念构建:

  1. Trace(追踪): 代表一个完整的"工作流"操作,包含多个Span。具有以下属性:

    • workflow_name: 工作流或应用的逻辑名称
    • trace_id: 追踪的唯一标识符
    • group_id: 可选的分组ID,用于关联同一会话中的多个追踪
    • metadata: 可选的元数据
  2. Span(跨度): 代表具有开始和结束时间的操作单元。包含:

    • 时间戳信息
    • 所属追踪的ID
    • 父Span的ID(如果有)
    • 特定类型的Span数据

默认追踪行为

SDK默认追踪以下操作:

| 操作类型 | 追踪方法 | 描述 | |---------|---------|------| | 代理运行 | agent_span() | 记录代理的完整执行过程 | | LLM生成 | generation_span() | 记录LLM的输入输出 | | 工具调用 | function_span() | 记录函数工具的调用过程 | | 护栏检查 | guardrail_span() | 记录护栏的执行情况 | | 交接操作 | handoff_span() | 记录交接过程 | | 语音输入 | transcription_span() | 记录语音转文本过程 | | 语音输出 | speech_span() | 记录文本转语音过程 | | 语音组 | speech_group_span() | 关联相关的语音Span |

默认情况下,追踪被命名为"Agent trace",但可以通过配置进行自定义。

高级追踪技巧

跨运行追踪

有时我们需要将多个run()调用关联到同一个追踪中。这可以通过trace()上下文管理器实现:

from agents import Agent, Runner, trace

async def main():
    agent = Agent(name="Joke generator", instructions="Tell funny jokes.")

    with trace("Joke workflow"):
        first_result = await Runner.run(agent, "Tell me a joke")
        second_result = await Runner.run(agent, f"Rate this joke: {first_result.final_output}")

这种模式下,两个run()调用会被记录为同一追踪下的不同Span,便于分析完整的工作流。

手动创建追踪

开发者可以手动创建追踪,有两种方式:

  1. 推荐方式:使用上下文管理器

    with trace("My workflow") as my_trace:
        # 你的代码
    
  2. 手动控制方式

    my_trace = trace("My workflow")
    my_trace.start()
    # 你的代码
    my_trace.finish()
    

追踪状态通过Python的contextvar管理,自动支持并发操作。

敏感数据处理

追踪系统会记录LLM输入输出和函数调用数据,这些可能包含敏感信息。SDK提供了以下控制选项:

  1. 通过RunConfig.trace_include_sensitive_data控制是否记录敏感数据
  2. 通过VoicePipelineConfig.trace_include_sensitive_audio_data控制是否记录音频数据

对于需要严格数据保护的应用,可以禁用这些选项。

自定义追踪处理

SDK的追踪架构高度可扩展:

  1. 添加处理器:使用add_trace_processor()添加额外的处理器,不影响默认行为
  2. 替换处理器:使用set_trace_processors()完全替换默认处理器

这种设计允许开发者将追踪数据发送到自定义后端或进行特殊处理。

追踪与监控生态

OpenAI Agents SDK的追踪系统与多种流行的监控工具兼容,包括但不限于:

  • Weights & Biases
  • Arize-Phoenix
  • MLflow
  • Braintrust
  • LangSmith
  • Langfuse

这种广泛的兼容性使得开发者可以轻松将SDK集成到现有的监控体系中。

总结

OpenAI Agents Python SDK的追踪功能为开发者提供了强大的工具来理解和优化AI代理的行为。通过合理配置和使用追踪功能,开发者可以:

  • 快速定位问题
  • 分析性能瓶颈
  • 监控生产环境中的代理行为
  • 集成到现有的监控系统

掌握这些追踪技巧,将显著提升开发效率和系统可靠性。

openai-agents-python A lightweight, powerful framework for multi-agent workflows openai-agents-python 项目地址: https://gitcode.com/gh_mirrors/op/openai-agents-python

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祁婉菲Flora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值