Pandana 项目使用教程

Pandana 项目使用教程

pandanaPandas Network Analysis by UrbanSim: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:项目地址:https://gitcode.com/gh_mirrors/pa/pandana

项目介绍

Pandana 是一个用于网络分析的 Python 库,它使用收缩层次结构(contraction hierarchies)来计算超快速的旅行可达性指标和最短路径。该项目的数值代码是用 C++ 编写的。Pandana 由 Fletcher Foti 创建,后续由 Matt Davis、Federico Fernandez、Sam Maurer 等人贡献,目前 Sam Maurer 是主要维护者。Pandana 依赖于 Dennis Luxen 和他的 OSRM 项目的收缩层次结构代码。

项目快速启动

安装

Pandana 可以通过 PyPI 或 Conda Forge 进行安装。以下是安装命令:

pip install pandana
# 或者
conda install pandana --channel conda-forge

快速示例

以下是一个简单的 Pandana 使用示例,展示如何加载网络数据并计算最短路径:

import pandana as pd

# 加载网络数据
net = pd.Network(node_x, node_y, edge_from, edge_to, edge_weights)

# 设置感兴趣点
net.set_pois(category="amenities", max_dist=500, max_pois=10, poi_nodes=poi_nodes)

# 计算最短路径
shortest_paths = net.shortest_path(start_node, end_node)

应用案例和最佳实践

Pandana 在城市规划和交通研究中有着广泛的应用。例如,它可以用于计算城市中不同区域的可达性,评估交通网络的效率,以及优化公共交通路线。以下是一个应用案例:

城市可达性分析

通过 Pandana,可以快速计算城市中每个节点到最近设施(如学校、医院)的距离,从而评估城市的可达性。

# 计算每个节点到最近学校的距离
distances_to_schools = net.nearest_pois(distance=5000, category="schools", num_pois=1)

典型生态项目

Pandana 是 UDST(Urban Data Science Toolkit)的一部分,UDST 提供了一系列用于城市数据分析的工具。以下是一些与 Pandana 相关的生态项目:

  • OSMnet: 用于从 OpenStreetMap 数据中提取交通网络。
  • UrbanAccess: 用于整合公共交通和步行网络数据。

这些工具与 Pandana 结合使用,可以构建完整的城市交通和可达性分析解决方案。


以上是 Pandana 项目的使用教程,涵盖了项目介绍、快速启动、应用案例和最佳实践以及典型生态项目。希望这些内容能帮助你更好地理解和使用 Pandana。

pandanaPandas Network Analysis by UrbanSim: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:项目地址:https://gitcode.com/gh_mirrors/pa/pandana

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭宏彬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值