Pandana 项目使用教程
项目介绍
Pandana 是一个用于网络分析的 Python 库,它使用收缩层次结构(contraction hierarchies)来计算超快速的旅行可达性指标和最短路径。该项目的数值代码是用 C++ 编写的。Pandana 由 Fletcher Foti 创建,后续由 Matt Davis、Federico Fernandez、Sam Maurer 等人贡献,目前 Sam Maurer 是主要维护者。Pandana 依赖于 Dennis Luxen 和他的 OSRM 项目的收缩层次结构代码。
项目快速启动
安装
Pandana 可以通过 PyPI 或 Conda Forge 进行安装。以下是安装命令:
pip install pandana
# 或者
conda install pandana --channel conda-forge
快速示例
以下是一个简单的 Pandana 使用示例,展示如何加载网络数据并计算最短路径:
import pandana as pd
# 加载网络数据
net = pd.Network(node_x, node_y, edge_from, edge_to, edge_weights)
# 设置感兴趣点
net.set_pois(category="amenities", max_dist=500, max_pois=10, poi_nodes=poi_nodes)
# 计算最短路径
shortest_paths = net.shortest_path(start_node, end_node)
应用案例和最佳实践
Pandana 在城市规划和交通研究中有着广泛的应用。例如,它可以用于计算城市中不同区域的可达性,评估交通网络的效率,以及优化公共交通路线。以下是一个应用案例:
城市可达性分析
通过 Pandana,可以快速计算城市中每个节点到最近设施(如学校、医院)的距离,从而评估城市的可达性。
# 计算每个节点到最近学校的距离
distances_to_schools = net.nearest_pois(distance=5000, category="schools", num_pois=1)
典型生态项目
Pandana 是 UDST(Urban Data Science Toolkit)的一部分,UDST 提供了一系列用于城市数据分析的工具。以下是一些与 Pandana 相关的生态项目:
- OSMnet: 用于从 OpenStreetMap 数据中提取交通网络。
- UrbanAccess: 用于整合公共交通和步行网络数据。
这些工具与 Pandana 结合使用,可以构建完整的城市交通和可达性分析解决方案。
以上是 Pandana 项目的使用教程,涵盖了项目介绍、快速启动、应用案例和最佳实践以及典型生态项目。希望这些内容能帮助你更好地理解和使用 Pandana。