ReLoRA项目安装与配置指南
1. 项目基础介绍
ReLoRA是一个开源项目,它是论文《Stack More Layers Differently: High-Rank Training Through Low-Rank Updates》的官方代码实现。该项目旨在通过低秩更新实现高层训练,是自然语言处理领域中的一种新型模型训练方法。主要编程语言为Python。
2. 项目使用的关键技术和框架
- PyTorch:一个开源的机器学习库,基于Torch,用于应用如计算机视觉和自然语言处理等领域的深度学习。
- LoRA(Low-Rank Adaptation):一种在预训练语言模型中引入低秩矩阵的技术,以提高模型的适应性。
- 参数效率训练(Parameter-Efficient Training,PEFT):在不改变模型整体结构的前提下,通过修改少量参数来提升模型性能。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下环境和依赖:
- Python 3.10或更高版本
- PyTorch 2.0或更高版本
- Git
详细安装步骤
-
克隆项目到本地
打开命令行,运行以下命令克隆ReLoRA项目:
git clone https://github.com/Guitaricet/relora.git cd relora
-
安装依赖
在项目目录中,使用pip安装项目所需的依赖:
pip install -r requirements.txt
如果需要安装Flash Attention,可能需要先安装torch和其他依赖,然后再运行:
pip install flash-attn
-
预处理数据
在开始训练模型之前,需要预处理数据。以下是一个预处理数据的示例命令:
python pretokenize.py \ --save_dir preprocessed_data \ --tokenizer t5-base \ --dataset c4 \ --dataset_config en \ --text_field text \ --sequence_length 512
这将预处理数据并保存在
preprocessed_data
目录下。 -
开始训练
使用以下命令开始训练模型,这里需要替换
<path to preprocessed data>
为预处理数据保存的路径,以及根据您的GPU数量设置<N_GPUS>
:export DATA_PATH=<path to preprocessed data> torchrun --nproc-per-node <N_GPUS> torchrun_main.py \ --model_config configs/llama_250m.json \ --dataset_path $DATA_PATH \ --batch_size 24 \ --total_batch_size 1152 \ --lr 5e-4 \ --max_length 512 \ --save_every 1000 \ --eval_every 1000 \ --num_training_steps 20000
以上步骤将帮助您成功安装并配置ReLoRA项目。请根据实际环境和需求调整配置参数。