ReLoRA项目安装与配置指南

ReLoRA项目安装与配置指南

relora Official code for ReLoRA from the paper Stack More Layers Differently: High-Rank Training Through Low-Rank Updates relora 项目地址: https://gitcode.com/gh_mirrors/re/relora

1. 项目基础介绍

ReLoRA是一个开源项目,它是论文《Stack More Layers Differently: High-Rank Training Through Low-Rank Updates》的官方代码实现。该项目旨在通过低秩更新实现高层训练,是自然语言处理领域中的一种新型模型训练方法。主要编程语言为Python。

2. 项目使用的关键技术和框架

  • PyTorch:一个开源的机器学习库,基于Torch,用于应用如计算机视觉和自然语言处理等领域的深度学习。
  • LoRA(Low-Rank Adaptation):一种在预训练语言模型中引入低秩矩阵的技术,以提高模型的适应性。
  • 参数效率训练(Parameter-Efficient Training,PEFT):在不改变模型整体结构的前提下,通过修改少量参数来提升模型性能。

3. 项目安装和配置的准备工作

在开始安装之前,请确保您的系统中已安装以下环境和依赖:

  • Python 3.10或更高版本
  • PyTorch 2.0或更高版本
  • Git

详细安装步骤

  1. 克隆项目到本地

    打开命令行,运行以下命令克隆ReLoRA项目:

    git clone https://github.com/Guitaricet/relora.git
    cd relora
    
  2. 安装依赖

    在项目目录中,使用pip安装项目所需的依赖:

    pip install -r requirements.txt
    

    如果需要安装Flash Attention,可能需要先安装torch和其他依赖,然后再运行:

    pip install flash-attn
    
  3. 预处理数据

    在开始训练模型之前,需要预处理数据。以下是一个预处理数据的示例命令:

    python pretokenize.py \
    --save_dir preprocessed_data \
    --tokenizer t5-base \
    --dataset c4 \
    --dataset_config en \
    --text_field text \
    --sequence_length 512
    

    这将预处理数据并保存在preprocessed_data目录下。

  4. 开始训练

    使用以下命令开始训练模型,这里需要替换<path to preprocessed data>为预处理数据保存的路径,以及根据您的GPU数量设置<N_GPUS>

    export DATA_PATH=<path to preprocessed data>
    torchrun --nproc-per-node <N_GPUS> torchrun_main.py \
    --model_config configs/llama_250m.json \
    --dataset_path $DATA_PATH \
    --batch_size 24 \
    --total_batch_size 1152 \
    --lr 5e-4 \
    --max_length 512 \
    --save_every 1000 \
    --eval_every 1000 \
    --num_training_steps 20000
    

以上步骤将帮助您成功安装并配置ReLoRA项目。请根据实际环境和需求调整配置参数。

relora Official code for ReLoRA from the paper Stack More Layers Differently: High-Rank Training Through Low-Rank Updates relora 项目地址: https://gitcode.com/gh_mirrors/re/relora

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昌寒庆Quillan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值