🤗 LeRobot 开源项目教程
项目地址:https://gitcode.com/gh_mirrors/le/lerobot
项目介绍
🤗 LeRobot 是一个旨在简化机器人项目启动的开源库,类似于 Transformers 库在自然语言处理(NLP)中的作用。LeRobot 提供了预训练模型和与物理模拟器的无缝集成,支持多种机器人硬件,从教育机械臂到复杂的人形机器人。该项目由 Hugging Face 维护,旨在通过提供一个适应性强、可扩展的 AI 系统来提高机器人应用的灵活性和可扩展性。
项目快速启动
安装步骤
-
克隆仓库:
git clone https://github.com/huggingface/lerobot.git cd lerobot
-
创建并激活虚拟环境:
conda create -n lerobot python=3.10 conda activate lerobot
-
安装 LeRobot:
pip install .
-
安装额外环境(可选):
pip install ".[aloha,pusht]"
基本使用
以下是一个简单的示例,展示如何加载预训练模型并进行基本操作:
from lerobot import LeRobotModel
# 加载预训练模型
model = LeRobotModel.from_pretrained("lerobot/act_aloha_sim_transfer_cube_human")
# 进行预测
result = model.predict(input_data)
print(result)
应用案例和最佳实践
案例一:AlohaTransferCube 环境
LeRobot 在 AlohaTransferCube 环境中的表现已被评估,并与原始 ACT 仓库中的类似模型进行了比较。结果显示,在 500 个回合中,LeRobot 的成功率提供了对其性能的宝贵见解。
案例二:PushT 环境
在 PushT 环境中,LeRobot 也进行了评估,并与原始 Diffusion Policy 代码训练的模型进行了比较。评估包括 500 个回合的成功指标,提供了对 LeRobot 在实际场景中能力的全面理解。
典型生态项目
生态项目一:Gymnasium 环境
🤗 LeRobot 提供了 Gymnasium 环境,可以用于模拟各种机器人任务,如 aloha、xarm 和 pusht。这些环境有助于在实际部署前进行测试和优化。
生态项目二:Weights and Biases 集成
LeRobot 支持与 Weights and Biases 集成,用于实验跟踪和日志记录。这有助于更有效地管理和分析实验数据。
import wandb
from lerobot import LeRobotModel
# 初始化 wandb
wandb.init(project="lerobot_experiments")
# 加载模型并进行训练
model = LeRobotModel.from_pretrained("lerobot/act_aloha_sim_transfer_cube_human")
model.train(data, wandb_logger=wandb)
通过这些模块和示例,您可以快速开始使用 🤗 LeRobot 进行机器人项目的开发和研究。