MAgent 开源项目教程

MAgent 开源项目教程

MAgent A Platform for Many-Agent Reinforcement Learning MAgent 项目地址: https://gitcode.com/gh_mirrors/ma/MAgent

1. 项目介绍

MAgent 是一个用于多智能体强化学习研究的平台。与以往专注于单个或少量智能体的研究平台不同,MAgent 旨在支持从数百到数百万智能体的强化学习研究。该项目由 geek-ai 团队开发,支持 Linux 和 OS X 系统,适用于 Python 2.7 和 Python 3。

2. 项目快速启动

2.1 安装

2.1.1 在 Linux 上安装
git clone git@github.com:geek-ai/MAgent.git
cd MAgent
sudo apt-get install cmake libboost-system-dev libjsoncpp-dev libwebsocketpp-dev
bash build.sh
export PYTHONPATH=$(pwd)/python:$PYTHONPATH
2.1.2 在 OS X 上安装
git clone git@github.com:geek-ai/MAgent.git
cd MAgent
brew install cmake llvm boost@1.55
brew install jsoncpp argp-standalone
brew tap david-icracked/homebrew-websocketpp
brew install --HEAD david-icracked/websocketpp/websocketpp
brew link --force boost@1.55
bash build.sh
export PYTHONPATH=$(pwd)/python:$PYTHONPATH

2.2 运行示例

2.2.1 训练示例
python examples/train_pursuit.py --train
python examples/train_gather.py --train
python examples/train_battle.py --train
2.2.2 交互游戏
python examples/show_battle_game.py

3. 应用案例和最佳实践

3.1 多智能体战斗

MAgent 提供了一个多智能体战斗的示例,用户可以通过训练不同的智能体来模拟战斗场景。通过调整参数和策略,可以实现不同的战斗效果。

3.2 资源收集

在资源收集的示例中,智能体需要学习如何在环境中收集资源。这个案例展示了如何在多智能体环境中实现合作与竞争。

3.3 追捕游戏

追捕游戏的示例展示了智能体如何通过学习策略来追捕目标。这个案例适合用于研究智能体的决策和行为模式。

4. 典型生态项目

4.1 Farama-Foundation/MAgent2

MAgent2 是 MAgent 的一个维护分支,支持通过 pip 安装。该项目提供了更新的功能和改进,适合需要最新特性的用户。

4.2 TensorFlow 和 MXNet 实现

MAgent 提供了基于 TensorFlow 和 MXNet 的基线算法实现,包括参数共享的 DQN、DRQN 和 A2C。这些实现展示了如何在多智能体环境中使用深度学习框架。

通过以上教程,您可以快速上手 MAgent 项目,并了解其在多智能体强化学习中的应用。

MAgent A Platform for Many-Agent Reinforcement Learning MAgent 项目地址: https://gitcode.com/gh_mirrors/ma/MAgent

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤力赛Frederica

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值