自驾模拟器中的模型预测控制(MPC)项目最佳实践

自驾模拟器中的模型预测控制(MPC)项目最佳实践

mpc A software pipeline using the Model Predictive Control method to drive a car around a virtual track. mpc 项目地址: https://gitcode.com/gh_mirrors/mpc3/mpc

1. 项目介绍

本项目是基于模型预测控制(Model Predictive Control,MPC)方法,用于控制车辆在虚拟赛道上行驶的软件。MPC是一种控制策略,能够预测系统在后续时间内的行为,并据此优化当前控制输入。在本开源项目中,通过MPC算法控制车辆沿着预定赛道行驶,并保持车辆的稳定和高效。

2. 项目快速启动

环境准备

在开始前,请确保您的开发环境中安装了以下依赖:

  • IPOPT:一个开源的优化库,用于解决连续优化问题。
  • CppAD:一个C++的自动微分库。
  • OpenSSL、libuv、cmake、zlib:基础的系统库。

此外,还需要编译uWebSockets库:

git clone https://github.com/uWebSockets/uWebSockets
cd uWebSockets
patch CMakeLists.txt < ../cmakepatch.txt
mkdir build
export PKG_CONFIG_PATH=/usr/local/opt/openssl/lib/pkgconfig
cd build
cmake ..
make
sudo make install
cd ..
cd ..
sudo rm -r uWebSockets

克隆和编译项目

克隆项目仓库,并编译:

git clone https://github.com/mithi/mpc
cd mpc
mkdir build && cd build
cc=gcc-6 cmake .. && make

运行项目

编译成功后,运行项目:

./mpc

3. 应用案例和最佳实践

MPC算法实现

在项目中,MPC算法的实现基于以下数学模型:

  • 车辆状态更新方程,包括位置、速度和方向。
  • 车辆行为预测,如横向误差(CTE)和航向误差(EPSI)。

通过这些模型,项目能够预测车辆的状态变化,并据此调整转向角(delta)和油门/刹车(a)。

代码优化实践

为了确保项目的性能和稳定性,以下编码实践被采用:

  • 代码结构清晰,模块化设计,易于维护和扩展。
  • 限制了转向角和油门/刹车量的范围,防止过于激进的驾驶行为。
  • 使用CMake进行编译配置,提高了项目的可移植性。

4. 典型生态项目

本项目是基于Udacity的自驾车辆纳米学位项目的延伸,与以下项目构成了良好的生态:

  • Udacity的CarND-MPC-Project:提供了MPC算法的基础框架和示例代码。
  • Udacity的自驾车辆模拟器:用于测试和验证MPC算法的实际效果。

通过这些项目,开发者和研究人员可以更好地理解MPC在自动驾驶中的应用,并推进相关技术的发展。

mpc A software pipeline using the Model Predictive Control method to drive a car around a virtual track. mpc 项目地址: https://gitcode.com/gh_mirrors/mpc3/mpc

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤力赛Frederica

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值