**Photoshop脸检测神器:揭开图像修饰的面纱**

Photoshop脸检测神器:揭开图像修饰的面纱

FALdetectorCode for the paper: Detecting Photoshopped Faces by Scripting Photoshop项目地址:https://gitcode.com/gh_mirrors/fa/FALdetector

在这个数字时代,我们日常所见的照片可能并非总是它们表面所示。随着图像编辑软件的普及,如Adobe Photoshop等工具,修改和美化照片已变得司空见惯。但这也引发了一个问题——如何辨别一张图片是否经过了人为修饰?本文将为您介绍一款开源项目,它不仅能帮助您识别那些被Photoshop润饰过的脸部图片,还能揭示其背后的修饰痕迹。让我们一起来探索这个名为“通过脚本化Photoshop检测修改过的人脸”的项目。


项目简介

该项目由UC Berkeley与Adobe Research联合开发,旨在通过深度学习算法识别并还原被Face-aware Liquify工具处理过的人脸图像。该工具是Photoshop中用于面部调整的强大功能之一,常被用于改善面部特征,如瘦脸或放大眼睛等。然而,这同样也意味着它可以轻易地篡改真实面貌。通过结合全局分类器和局部检测器,“通过脚本化Photoshop检测修改过的人脸”项目能够高效准确地识别这些经修改后的脸部图片,并估算出原始状态。

技术分析

项目的核心在于两个关键组件:全球分类器(Global Classifier)与局部检测器(Local Detector)。前者负责整体判断图像是否经过编辑;而后者则聚焦于面部区域,检测具体哪些部位受到了编辑影响。两者均基于PyTorch框架构建,并通过复杂的数据增强训练来提高模型对不同后处理操作的鲁棒性,例如重采样、JPEG压缩以及饱和度/亮度变化。

  • 全局分类器:使用深度残差网络(ResNet)变体DRN-C-26进行训练,以适应Face-aware Liquify处理过的脸部图像。

  • 局部检测器:采用卷积神经网络(CNN),能精确定位脸部区域内的编辑痕迹,为用户提供更直观的结果展示。

应用场景及技术应用

  • 数字取证领域:

    在法律纠纷或版权侵权案件中,验证图像的真实性至关重要。该工具可以作为辅助手段,揭露潜在的图像篡改行为。

  • 社交媒体监控:

    对于社交媒体平台而言,自动检测并标记被过度修饰的图像有助于维护社区健康氛围,减少虚假信息传播。

  • 广告行业标准审查:

    确保广告中的模特形象没有过分修改,保持诚信透明,避免误导消费者。

项目特点

  • 高精度表现:在公开测试数据集上,模型显示出高达93.9%的准确性与98.9%的平均精确率,显著提升图像篡改检测领域的技术水平。

  • 易于集成与扩展:代码结构清晰,支持PyTorch环境快速部署,且提供了详细的操作指南,便于研究者进一步改进或应用于新场景。

  • 面向多种用途的灵活性:无论是科研人员希望深入理解图像编辑技巧的影响,还是企业寻求自动化的图像真伪验证解决方案,本项目都可满足不同需求。


为了促进学术界与业界在这一领域的进展,“通过脚本化Photoshop检测修改过的人脸”项目不仅分享了完整的源码,还提供了预训练模型权重下载链接,甚至包括了一套评价数据集供用户检验模型效果。无论你是研究者,开发者,还是仅仅是对此话题感兴趣的爱好者,都不妨一试。开始你的探索之旅,让科技的力量助力您揭开图像背后的秘密!


参考文献


让我们共同期待,“通过脚本化Photoshop检测修改过的人脸”项目能够在更多场景下发挥其独特价值,推动图像安全与真实性评估领域的发展。

FALdetectorCode for the paper: Detecting Photoshopped Faces by Scripting Photoshop项目地址:https://gitcode.com/gh_mirrors/fa/FALdetector

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢红梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值