Learn Agentic AI 使用教程

Learn Agentic AI 使用教程

learn-agentic-ai Learn Agentic AI using Dapr Agentic Cloud Ascent (DACA) Design Pattern: OpenAI Agents SDK, Memory, MCP, Knowledge Graphs, Docker, Docker Compose, and Kubernetes. learn-agentic-ai 项目地址: https://gitcode.com/gh_mirrors/le/learn-agentic-ai

1. 项目介绍

本项目是 Panaversity Certified Agentic & Robotic AI Engineer 认证课程的一部分,涵盖了 AI-201 和 AI-202 课程内容。项目专注于使用 Dapr Agentic Cloud Ascent (DACA) 设计模式开发复杂的 Agentic AI 系统,并将其部署在云原生技术上。DACA 设计模式是一种用于构建和部署全球规模多代理系统的方法。

2. 项目快速启动

环境准备

在开始之前,请确保您已经安装了以下工具:

  • Docker
  • Docker Compose
  • CronJobs
  • RabbitMQ
  • MCP Server SDK
  • Dapr
  • Azure Container Apps (可选)
  • Kubernetes (可选)

克隆项目

git clone https://github.com/panaversity/learn-agentic-ai.git
cd learn-agentic-ai

启动服务

使用 Docker Compose 启动项目中的所有服务。

docker-compose up

3. 应用案例和最佳实践

案例一:对话式 AI 代理

通过 OpenAI Responses API 和 OpenAI Agents SDK,您可以构建能够进行自然对话的 AI 代理。这些代理可以用于客户服务、虚拟助手等场景。

案例二:生成式 AI 代理

利用生成式 AI,您可以创建能够生成文本、图像、音频等内容的代理。这些代理可以用于内容创作、数据分析等应用。

最佳实践

  • 内存管理:确保您的代理能够有效地处理短期和长期记忆。
  • 标准化工具调用:使用 MCP (Model Context Protocol) 来标准化代理之间的工具调用。
  • 可观测性:在代理系统中实现日志记录、监控和故障排除。

4. 典型生态项目

  • Appointment Booking Agent:一个用于预约预订的代理原型项目。
  • Agentia Projects:一个包含多个 Agentia 项目的示例集合。
  • Startups:一系列针对初创公司的 Agentic AI 项目。

以上就是 Learn Agentic AI 的基本使用教程。通过这个项目,您将能够掌握构建和部署 Agentic AI 系统的核心技能。

learn-agentic-ai Learn Agentic AI using Dapr Agentic Cloud Ascent (DACA) Design Pattern: OpenAI Agents SDK, Memory, MCP, Knowledge Graphs, Docker, Docker Compose, and Kubernetes. learn-agentic-ai 项目地址: https://gitcode.com/gh_mirrors/le/learn-agentic-ai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢红梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值