Learn Agentic AI 使用教程
1. 项目介绍
本项目是 Panaversity Certified Agentic & Robotic AI Engineer 认证课程的一部分,涵盖了 AI-201 和 AI-202 课程内容。项目专注于使用 Dapr Agentic Cloud Ascent (DACA) 设计模式开发复杂的 Agentic AI 系统,并将其部署在云原生技术上。DACA 设计模式是一种用于构建和部署全球规模多代理系统的方法。
2. 项目快速启动
环境准备
在开始之前,请确保您已经安装了以下工具:
- Docker
- Docker Compose
- CronJobs
- RabbitMQ
- MCP Server SDK
- Dapr
- Azure Container Apps (可选)
- Kubernetes (可选)
克隆项目
git clone https://github.com/panaversity/learn-agentic-ai.git
cd learn-agentic-ai
启动服务
使用 Docker Compose 启动项目中的所有服务。
docker-compose up
3. 应用案例和最佳实践
案例一:对话式 AI 代理
通过 OpenAI Responses API 和 OpenAI Agents SDK,您可以构建能够进行自然对话的 AI 代理。这些代理可以用于客户服务、虚拟助手等场景。
案例二:生成式 AI 代理
利用生成式 AI,您可以创建能够生成文本、图像、音频等内容的代理。这些代理可以用于内容创作、数据分析等应用。
最佳实践
- 内存管理:确保您的代理能够有效地处理短期和长期记忆。
- 标准化工具调用:使用 MCP (Model Context Protocol) 来标准化代理之间的工具调用。
- 可观测性:在代理系统中实现日志记录、监控和故障排除。
4. 典型生态项目
- Appointment Booking Agent:一个用于预约预订的代理原型项目。
- Agentia Projects:一个包含多个 Agentia 项目的示例集合。
- Startups:一系列针对初创公司的 Agentic AI 项目。
以上就是 Learn Agentic AI 的基本使用教程。通过这个项目,您将能够掌握构建和部署 Agentic AI 系统的核心技能。