GeoMAN 项目教程
GeoMAN Tensorflow Implementation of GeoMAN, IJCAI-18 项目地址: https://gitcode.com/gh_mirrors/ge/GeoMAN
1. 项目目录结构及介绍
GeoMAN 项目的目录结构如下:
GeoMAN/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── geoman.py
├── utils/
│ ├── __init__.py
│ └── data_loader.py
├── config/
│ ├── config.yaml
│ └── default.yaml
├── main.py
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放数据文件的目录,包括原始数据 (
raw/
) 和处理后的数据 (processed/
)。 - models/: 存放模型相关的代码文件,
geoman.py
是主要的模型实现文件。 - utils/: 存放工具函数和数据加载相关的代码文件,
data_loader.py
负责数据的加载和预处理。 - config/: 存放配置文件,
config.yaml
是主要的配置文件,default.yaml
是默认配置文件。 - main.py: 项目的启动文件,负责整个项目的运行流程。
- README.md: 项目的说明文档,包含项目的基本信息和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
main.py
是 GeoMAN 项目的启动文件,负责整个项目的运行流程。以下是 main.py
的主要功能介绍:
import argparse
from config.config import load_config
from utils.data_loader import DataLoader
from models.geoman import GeoMAN
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description="GeoMAN Model")
parser.add_argument('--config', type=str, default='config/config.yaml', help='Path to the config file')
args = parser.parse_args()
# 加载配置文件
config = load_config(args.config)
# 加载数据
data_loader = DataLoader(config)
train_data, test_data = data_loader.load_data()
# 初始化模型
model = GeoMAN(config)
# 训练模型
model.train(train_data)
# 测试模型
model.test(test_data)
if __name__ == "__main__":
main()
主要功能
- 解析命令行参数: 通过
argparse
模块解析命令行参数,获取配置文件路径。 - 加载配置文件: 使用
load_config
函数从指定路径加载配置文件。 - 加载数据: 使用
DataLoader
类加载训练和测试数据。 - 初始化模型: 初始化
GeoMAN
模型。 - 训练模型: 调用
train
方法训练模型。 - 测试模型: 调用
test
方法测试模型。
3. 项目的配置文件介绍
GeoMAN 项目的主要配置文件是 config/config.yaml
,以下是配置文件的主要内容介绍:
# 数据路径配置
data:
raw_data_path: "data/raw/raw_data.csv"
processed_data_path: "data/processed/processed_data.csv"
# 模型配置
model:
input_dim: 10
output_dim: 1
hidden_dim: 50
num_layers: 2
# 训练配置
training:
batch_size: 32
epochs: 100
learning_rate: 0.001
# 测试配置
testing:
batch_size: 64
配置文件介绍
- data: 数据路径配置,包括原始数据路径 (
raw_data_path
) 和处理后的数据路径 (processed_data_path
)。 - model: 模型配置,包括输入维度 (
input_dim
)、输出维度 (output_dim
)、隐藏层维度 (hidden_dim
) 和层数 (num_layers
)。 - training: 训练配置,包括批量大小 (
batch_size
)、训练轮数 (epochs
) 和学习率 (learning_rate
)。 - testing: 测试配置,包括批量大小 (
batch_size
)。
通过修改配置文件中的参数,可以调整模型的行为和训练过程。
GeoMAN Tensorflow Implementation of GeoMAN, IJCAI-18 项目地址: https://gitcode.com/gh_mirrors/ge/GeoMAN