Sparkling Water 开源项目安装与使用指南
1. 目录结构及介绍
Sparkling Water 的 GitHub 存储库遵循一种清晰的组织结构,以支持其功能集成在 Apache Spark 环境中。以下是其主要的目录和文件夹结构概述:
docs
: 包含项目文档,包括用户指南和API参考。h2o
: 内部H2O相关代码,确保H2O与Spark之间的交互。core
: 核心库,实现了Sparkling Water的主要功能逻辑。examples
: 提供了多个示例应用,展示如何使用Sparkling Water进行机器学习任务。python
: 包含PySparkling的相关实现,允许从Python使用Sparkling Water。r-cran
: 支持R语言的Sparkling Water接口的代码。gradle
: 构建系统相关文件,用于编译和打包项目。.gitignore
,LICENSE
,CODE_OF_CONDUCT.md
,README.rst
: 标准的Git忽略文件,许可证信息,行为准则以及项目读我文件。build.gradle
,settings.gradle
: Gradle构建脚本,管理项目依赖和构建过程。src/main
,src/test
: 源代码和测试代码存放位置,分别针对主程序和测试。
2. 项目启动文件介绍
Sparkling Water并没有一个单一的“启动文件”,而是通过多种方式整合到Spark环境中。用户可以通过以下几种方法启动Sparkling Water:
- Sparkling Shell (
bin/sparkling-shell
): 该脚本是Spark Shell的一个扩展,它自动包含了Sparkling Water的依赖,使得可以直接在Spark Shell中使用H2O的功能。 - Spark Submit 通过在命令行中使用
spark-submit
命令,并且通过--class
参数指定入口点,并通过--packages
添加Sparkling Water作为依赖。 - PySparkling 通过Python环境运行,调用
pysparkling
来初始化Sparkling Water环境。
启动时,通常需要设置SPARK_HOME
和MASTER
环境变量,指向你的Spark安装路径和Spark集群的地址。
3. 项目的配置文件介绍
Sparkling Water不直接提供一个单独的、显式的配置文件模板,而是依赖于Spark本身的配置和通过代码中的参数设置来定制行为。配置通常通过以下几种方式完成:
- Spark配置:通过Spark的标准配置机制,如修改
spark-defaults.conf
或者在启动时使用--conf
参数来传递特定的Spark配置。 - Sparkling Water参数:在创建
H2OContext
时,可以设置一些专属于Sparkling Water的配置,例如内存分配、后台模式(内部或外部)等,这些通常是通过编程方式进行的,例如:import ai.h2o.sparkling._ val hc = H2OContext.getOrCreate(sparkSession, config = H2OConf().set("h2o.cluster.size", "10"))
对于更高级的使用场景,可能涉及编辑Gradle构建文件来调整依赖版本或编译选项,但这不属于日常配置范畴。
请注意,实际部署和配置细节应参考Sparkling Water的官方文档,以获取最新和最准确的信息。此指南仅为基于现有知识的简化版概述。