Karafka 使用教程

Karafka 使用教程

karafka Ruby and Rails efficient Kafka processing framework karafka 项目地址: https://gitcode.com/gh_mirrors/ka/karafka

1. 项目介绍

Karafka 是一个针对 Ruby 和 Rails 的多线程高效 Kafka 处理框架。它具备以下特性:

  • 内置 Web UI,方便监控和管理基于 Karafka 的应用程序。
  • 支持并行处理,包括单个主题分区的工作。
  • 自动与 Ruby on Rails 集成。
  • 支持 ActiveJob 后端(包括有序作业)。
  • 内置无缝的死信队列功能。
  • 支持开发中的代码热重载。
  • 由 Apache Kafka 的 C/C++ 客户端库 librdkafka 提供支持。
  • 提供了开箱即用的 AppSignal 和 StatsD/DataDog 监控及仪表板模板。

2. 项目快速启动

首先,确保 Kafka 已经运行。可以从 Kafka 官方文档获取启动 Kafka 的指令。

接着,添加并安装 Karafka:

# 确保安装 Karafka 2.4 或更高版本
bundle add karafka --version '>= 2.4.0'
bundle exec karafka install

配置你的 karafka.rb 文件,定义要消费的主题和消费者:

Karafka::App.routes.draw do
  topic 'system_events' do
    consumer EventsConsumer
  end
end

创建消费者类,处理消息:

class EventsConsumer < ApplicationConsumer
  def consume
    # 以高效的方式将所有传入的 Kafka 事件存储在本地
    Event.insert_all(messages.payloads)
  end
end

启动 Karafka 服务器:

bundle exec karafka server

发送一个消息到示例主题:

Karafka.producer.produce_sync(
  topic: 'example',
  payload: { 'ping' => 'pong' }.to_json
)

3. 应用案例和最佳实践

  • 批量处理:利用 Karafka 的批处理功能可以有效地处理大量消息。
  • 监控和日志:使用 Karafka 内置的 Web UI 和集成监控工具,如 AppSignal 和 StatsD,可以轻松监控应用程序的运行状态。
  • 错误处理:利用死信队列功能,可以有效地处理和记录无法正常处理的消息。

4. 典型生态项目

Karafka 作为一个 Kafka 处理框架,可以与多个 Ruby 和 Rails 项目集成,例如:

  • ActiveJob:作为后台作业处理系统,与 Karafka 集成可以实现作业的高效处理。
  • AppSignal:用于监控应用程序性能和异常。
  • StatsD:用于实时监控和指标分析。

通过以上介绍,你可以开始使用 Karafka 进行高效的消息处理。更多的配置选项和高级用法,可以参考 Karafka 的官方文档和社区资源。

karafka Ruby and Rails efficient Kafka processing framework karafka 项目地址: https://gitcode.com/gh_mirrors/ka/karafka

基于python+NSGA2算法的供水管网水质监测点布局+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 供水管网水质监测点/传感器布局优化 1.基于整数编码的NSGA2算法 2.最短监测时间与最大监测概率双目标函数 3.使用基于epanet的wntr库进行水力水质模拟,并处理结果 4.将处理结果代入NSGA2算法, 迭代计算出结果 5. 所有功能基本实现, 流程基本可以走通 程序概述 本程序主要是解决供水管网水质监测点的布局优化问题; 面向的是突发污染情况下的水质监测点选取,因此需要多节点进行水质污染注入实验; 之前的做法都是使用epanet的程序包,链接库,但USEPA之后开源了基于Python的水力水质模拟库WNTR; 因此本程序使用了WNTR进行水力水质模拟,编写了水质模拟、数据处理模块;用于解决污染实验的实现与数据收集处理; 由于选择监测点是布局优化问题,因此使用了常见的进化算法NSGA2——非支配遗传算法; 水质监测布局常用的目标是最小化监测时间和最大化监测事件,即一组监测点尽可能对污染事件发生响应最快,对污染事件监测到的数量最多即为最优,但两个目标属于负相关。 有关帕累托解、NGSA2算法请自行搜索其他资料。 本程序实现了水质模拟、数据处理、算法迭代的全部过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉娴鹃Everett

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值