WebMagic 爬虫框架使用教程

WebMagic 爬虫框架使用教程

项目地址:https://gitcode.com/gh_mirrors/we/webmagic

项目介绍

WebMagic 是一个简单灵活的 Java 爬虫框架,它基于模块化设计,易于扩展和维护。WebMagic 提供了简洁的 API,使得开发者可以快速上手,并且支持多线程和分布式爬取。

项目快速启动

环境准备

  • Java 开发环境
  • Maven 依赖管理工具

添加 Maven 依赖

在你的 pom.xml 文件中添加以下依赖:

<dependency>
    <groupId>us.codecraft</groupId>
    <artifactId>webmagic-core</artifactId>
    <version>0.7.3</version>
</dependency>
<dependency>
    <groupId>us.codecraft</groupId>
    <artifactId>webmagic-extension</artifactId>
    <version>0.7.3</version>
</dependency>

编写爬虫代码

以下是一个简单的爬虫示例:

import us.codecraft.webmagic.Page;
import us.codecraft.webmagic.Site;
import us.codecraft.webmagic.Spider;
import us.codecraft.webmagic.processor.PageProcessor;

public class GithubRepoPageProcessor implements PageProcessor {
    private Site site = Site.me().setRetryTimes(3).setSleepTime(1000).setTimeOut(10000);

    @Override
    public void process(Page page) {
        page.addTargetRequests(page.getHtml().links().regex("(https://github\\.com/[\\w\\-]+/[\\w\\-]+)").all());
        page.addTargetRequests(page.getHtml().links().regex("(https://github\\.com/[\\w\\-])").all());
        page.putField("author", page.getUrl().regex("https://github\\.com/(\\w+)/ *").toString());
        page.putField("name", page.getHtml().xpath("//h1[@class='entry-title public']/strong/a/text()").toString());
        if (page.getResultItems().get("name") == null) {
            // 跳过这个页面
            page.setSkip(true);
        }
    }

    @Override
    public Site getSite() {
        return site;
    }

    public static void main(String[] args) {
        Spider.create(new GithubRepoPageProcessor())
                .addUrl("https://github.com/code4craft")
                .thread(5)
                .run();
    }
}

应用案例和最佳实践

应用案例

WebMagic 可以用于各种数据抓取任务,例如:

  • 新闻网站的内容抓取
  • 电商网站的商品信息抓取
  • 社交媒体的用户数据抓取

最佳实践

  • 设置合理的请求间隔:避免对目标网站造成过大压力。
  • 错误重试机制:在网络不稳定时,设置重试次数可以提高爬取成功率。
  • 数据存储:合理选择数据存储方式,如数据库、文件等。

典型生态项目

WebMagic 作为一个灵活的爬虫框架,可以与其他项目结合使用,例如:

  • 数据分析工具:如 Apache Spark、Hadoop 等,用于对抓取的数据进行分析。
  • 数据可视化工具:如 ECharts、D3.js 等,用于展示抓取的数据。
  • 机器学习框架:如 TensorFlow、PyTorch 等,用于对抓取的数据进行进一步处理和分析。

通过这些生态项目的结合,可以构建出更加强大的数据处理和分析系统。

webmagic A scalable web crawler framework for Java. webmagic 项目地址: https://gitcode.com/gh_mirrors/we/webmagic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔朦煦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值