recasepunc 项目使用教程
1. 项目的目录结构及介绍
recasepunc 项目的目录结构如下:
recasepunc/
├── README.md
├── requirements.txt
├── recasepunc.py
├── prepare.sh
├── train.sh
├── eval.py
├── checkpoint/
├── data/
└── config/
- README.md: 项目介绍和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
- recasepunc.py: 主程序文件,用于训练和评估模型。
- prepare.sh: 用于下载数据、创建数据集和预处理的脚本。
- train.sh: 用于训练模型的脚本。
- eval.py: 用于评估模型性能的脚本。
- checkpoint/: 存放训练过程中的检查点文件。
- data/: 存放数据集文件。
- config/: 存放配置文件。
2. 项目的启动文件介绍
项目的启动文件主要是 recasepunc.py
,它包含了训练和评估模型的主要逻辑。以下是该文件的主要功能:
- 训练模型: 使用
python recasepunc.py train
命令启动训练过程。 - 评估模型: 使用
python recasepunc.py eval
命令启动评估过程。
3. 项目的配置文件介绍
项目的配置文件主要存放在 config/
目录下。配置文件用于设置模型的参数和环境变量。以下是配置文件的主要内容:
- 环境变量: 在
env.sh
文件中设置,包括 Python 环境路径、数据集路径等。 - 模型参数: 在
recasepunc.py
文件中设置,包括 BERT 模型类型、分词器配置等。
使用示例
训练模型
python recasepunc.py train --lang en
评估模型
python recasepunc.py eval --lang en
通过以上步骤,您可以成功地使用 recasepunc 项目进行模型训练和评估。