Tencent ML-Images:全球最大的多标签图像数据库

Tencent ML-Images:全球最大的多标签图像数据库

tencent-ml-images Largest multi-label image database; ResNet-101 model; 80.73% top-1 acc on ImageNet tencent-ml-images 项目地址: https://gitcode.com/gh_mirrors/te/tencent-ml-images

项目介绍

Tencent ML-Images 是由腾讯开源的一个大型多标签图像数据库,包含了17,609,752张训练图像和88,739张验证图像,这些图像被标注了多达11,166个类别。此外,该项目还提供了一个在ML-Images上预训练的Resnet-101模型,该模型通过迁移学习在ImageNet上达到了80.73%的top-1准确率。

项目技术分析

数据来源

ML-Images的数据主要来源于ImageNetOpen Images。具体来说:

  • ImageNet部分:采用了10,706,941张训练图像和50,000张验证图像,涵盖了10,032个类别。
  • Open Images部分:采用了6,902,811张训练图像和38,739张验证图像,涵盖了1,134个类别。

最终,ML-Images包含了17,609,752张训练图像和88,739张验证图像,涵盖了11,166个类别。

数据下载

由于版权问题,项目不直接提供原始图像,但用户可以通过提供的图像ID和URL文件自行下载图像。具体步骤如下:

  • 从ImageNet下载:使用train_image_id_from_imagenet.txtval_image_id_from_imagenet.txt文件中的图像ID从ImageNet下载图像。
  • 从Open Images下载:使用train_urls_from_openimages.txtval_urls_from_openimages.txt文件中的URL下载图像。

语义层次结构

ML-Images的11,166个类别根据WordNet构建了语义层次结构,包含4棵独立的树,最长语义路径长度为16,平均长度为7.47。

项目及技术应用场景

图像分类

ML-Images数据库和预训练模型可以广泛应用于图像分类任务。通过在ML-Images上预训练的Resnet-101模型,用户可以在自己的图像分类任务中进行迁移学习,显著提高模型的准确率。

特征提取

预训练的Resnet-101模型还可以用于图像特征提取,为其他计算机视觉任务(如目标检测、图像分割等)提供高质量的特征表示。

多标签分类

ML-Images的多标签标注特性使其非常适合用于多标签分类任务的研究和应用。

项目特点

规模庞大

ML-Images是目前全球最大的多标签图像数据库,包含了超过1700万张训练图像和近9万张验证图像,涵盖了11,166个类别。

高质量标注

图像的标注基于ImageNet和Open Images的原始标注,并进行了进一步的筛选和优化,确保了标注的高质量。

预训练模型

项目提供了在ML-Images上预训练的Resnet-101模型,用户可以直接使用该模型进行迁移学习,节省了大量的训练时间和计算资源。

语义层次结构

ML-Images的类别根据WordNet构建了语义层次结构,有助于模型更好地理解图像的语义信息。

结语

Tencent ML-Images作为一个开源的大型多标签图像数据库,不仅提供了丰富的图像数据,还提供了高质量的预训练模型,极大地推动了图像分类和多标签分类领域的发展。无论你是研究人员还是开发者,Tencent ML-Images都将成为你不可或缺的工具。快来体验吧!

tencent-ml-images Largest multi-label image database; ResNet-101 model; 80.73% top-1 acc on ImageNet tencent-ml-images 项目地址: https://gitcode.com/gh_mirrors/te/tencent-ml-images

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔朦煦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值