LocalViT 开源项目教程
LocalViT项目地址:https://gitcode.com/gh_mirrors/lo/LocalViT
项目介绍
LocalViT 是一个旨在将局部性引入视觉变换器(Vision Transformers)的 PyTorch 项目。通过引入局部机制,LocalViT 能够持续提升当前视觉变换器的性能。项目由 Yawei Li、Kai Zhang、Jiezhang Cao、Radu Timofte 和 Luc Van Gool 等人开发。如果你在论文中使用此代码,请引用相关文献。
项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch 和 timm
库。你可以使用以下命令安装 timm
:
pip install timm==0.3.2
数据准备
下载并解压 ImageNet 的训练和验证图像。目录结构应遵循 torchvision
的 ImageFolder
标准布局:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_18.JPEG
│ ├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
评估模型
使用单个 GPU 评估在 ImageNet 上预训练的 LocalViT-T 模型:
python main.py --model localvit_tiny_mlp4_act3_r192 --eval --resume /path/to/localvit_t.pth --data-path /path/to/imagenet
应用案例和最佳实践
应用案例
LocalViT 可以应用于各种图像识别任务,如物体检测、图像分类等。通过引入局部性机制,模型能够更好地捕捉图像中的局部结构,从而提高识别精度。
最佳实践
- 数据预处理:确保图像数据预处理符合模型要求,如尺寸调整、归一化等。
- 超参数调整:根据具体任务调整学习率、批大小等超参数。
- 模型微调:在特定任务上微调预训练模型,以获得更好的性能。
典型生态项目
PyTorch 生态
LocalViT 作为 PyTorch 项目,可以与 PyTorch 生态中的其他工具和库无缝集成,如 torchvision
、transformers
等。
相关项目
- timm:一个用于图像模型的 PyTorch 库,包含多种预训练模型和实用工具。
- torchvision:提供常用的数据集、模型架构和图像变换。
通过这些生态项目,LocalViT 可以进一步扩展其功能和应用范围。