LocalViT 开源项目教程

LocalViT 开源项目教程

LocalViT项目地址:https://gitcode.com/gh_mirrors/lo/LocalViT

项目介绍

LocalViT 是一个旨在将局部性引入视觉变换器(Vision Transformers)的 PyTorch 项目。通过引入局部机制,LocalViT 能够持续提升当前视觉变换器的性能。项目由 Yawei Li、Kai Zhang、Jiezhang Cao、Radu Timofte 和 Luc Van Gool 等人开发。如果你在论文中使用此代码,请引用相关文献。

项目快速启动

安装依赖

首先,确保你已经安装了 PyTorch 和 timm 库。你可以使用以下命令安装 timm

pip install timm==0.3.2

数据准备

下载并解压 ImageNet 的训练和验证图像。目录结构应遵循 torchvisionImageFolder 标准布局:

│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_18.JPEG
│ ├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG

评估模型

使用单个 GPU 评估在 ImageNet 上预训练的 LocalViT-T 模型:

python main.py --model localvit_tiny_mlp4_act3_r192 --eval --resume /path/to/localvit_t.pth --data-path /path/to/imagenet

应用案例和最佳实践

应用案例

LocalViT 可以应用于各种图像识别任务,如物体检测、图像分类等。通过引入局部性机制,模型能够更好地捕捉图像中的局部结构,从而提高识别精度。

最佳实践

  1. 数据预处理:确保图像数据预处理符合模型要求,如尺寸调整、归一化等。
  2. 超参数调整:根据具体任务调整学习率、批大小等超参数。
  3. 模型微调:在特定任务上微调预训练模型,以获得更好的性能。

典型生态项目

PyTorch 生态

LocalViT 作为 PyTorch 项目,可以与 PyTorch 生态中的其他工具和库无缝集成,如 torchvisiontransformers 等。

相关项目

  • timm:一个用于图像模型的 PyTorch 库,包含多种预训练模型和实用工具。
  • torchvision:提供常用的数据集、模型架构和图像变换。

通过这些生态项目,LocalViT 可以进一步扩展其功能和应用范围。

LocalViT项目地址:https://gitcode.com/gh_mirrors/lo/LocalViT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俞凯润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值