Scholarly Python 包使用教程

Scholarly Python 包使用教程

scholarlyRetrieve author and publication information from Google Scholar in a friendly, Pythonic way without having to worry about CAPTCHAs!项目地址:https://gitcode.com/gh_mirrors/sc/scholarly

项目介绍

Scholarly 是一个 Python 包,用于访问和解析 Google Scholar 的数据。它允许用户自动化地获取学术论文的信息,包括作者、标题、引用次数等。这个项目非常适合研究人员、数据科学家和任何需要从 Google Scholar 获取学术数据的用户。

项目快速启动

以下是一个简单的示例,展示如何使用 Scholarly 包来获取特定作者的论文信息。

from scholarly import scholarly

# 获取作者信息
author = scholarly.search_author_id('qJcIRKoAAAAJ')
print(author)

# 获取作者的详细信息
author_details = scholarly.fill(author)
print(author_details)

# 获取作者的论文列表
publications = author_details['publications']
for pub in publications:
    print(pub)

应用案例和最佳实践

应用案例

  1. 学术研究:研究人员可以使用 Scholarly 来跟踪特定领域的最新研究进展,分析学术趋势。
  2. 数据分析:数据科学家可以利用 Scholarly 获取大量学术数据,进行数据挖掘和分析。
  3. 教育资源:教师和学生可以使用 Scholarly 来查找和评估学术资源,提高学习和研究的效率。

最佳实践

  1. 合理使用:由于 Scholarly 依赖于 Google Scholar,因此在使用时应遵守 Google Scholar 的使用条款,避免过度频繁的请求。
  2. 错误处理:在编写脚本时,应考虑添加错误处理机制,以应对网络问题或数据解析错误。
  3. 数据存储:对于获取的大量数据,建议使用数据库进行存储,以便后续分析和查询。

典型生态项目

Scholarly 可以与其他 Python 库结合使用,以构建更复杂的应用。以下是一些典型的生态项目:

  1. Pandas:用于数据处理和分析,可以将 Scholarly 获取的数据转换为 DataFrame 进行进一步分析。
  2. Matplotlib:用于数据可视化,可以将分析结果以图表形式展示。
  3. Scrapy:用于网页爬虫,可以与 Scholarly 结合,实现更复杂的网络数据抓取任务。

通过这些生态项目的结合,用户可以构建出功能强大的学术数据分析工具。

scholarlyRetrieve author and publication information from Google Scholar in a friendly, Pythonic way without having to worry about CAPTCHAs!项目地址:https://gitcode.com/gh_mirrors/sc/scholarly

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俞凯润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值