rPPG-Toolbox 开源项目使用教程
1. 项目目录结构及介绍
rPPG-Toolbox 是一个用于相机基于生理信号感知的开源平台,以下是其主要目录结构及功能介绍:
rPPG-Toolbox/
├── configs/ # 配置文件目录
├── dataset/ # 数据集目录
├── evaluation/ # 评估脚本目录
├── figures/ # 图表和可视化结果目录
├── final_model_release/ # 最终模型发布目录
├── model_outputs/ # 模型输出目录
├── neural_methods/ # 神经网络方法目录
├── tools/ # 工具脚本目录
├── unsupervised_methods/ # 无监督方法目录
├── wip/ # 工作进行中目录
├── .gitignore # Git 忽略文件
├── LICENSE # 许可证文件
├── README.md # 项目说明文件
├── config.py # 配置文件
├── main.py # 主程序文件
├── requirements.txt # 项目依赖文件
└── setup.sh # 设置脚本
2. 项目的启动文件介绍
项目的启动文件是 main.py
,它是程序的主入口。在这个文件中,通常包含了以下内容:
- 加载配置文件
- 初始化数据集
- 加载和训练模型
- 模型评估和测试
用户可以通过修改配置文件 config.py
中的参数来调整项目的运行行为。
3. 项目的配置文件介绍
项目的配置文件是 config.py
,它包含了项目运行时所需的各种参数设置。以下是一些常见的配置项:
# 数据集配置
DATASET_NAME = 'UBFC-rPPG'
DATASET_PATH = 'path/to/dataset'
# 模型配置
MODEL_NAME = 'DeepPhys'
MODEL_PATH = 'path/to/model'
# 训练配置
LEARNING_RATE = 0.001
BATCH_SIZE = 32
NUM_EPOCHS = 10
# 评估配置
EVALUATION_METRICS = ['MAE', 'MAPE']
在 config.py
文件中,用户可以根据自己的需求调整这些参数,以实现不同的训练和评估效果。确保所有路径设置正确,以指向正确的数据集和模型文件夹。